Microcontroller System Design using PIC18F Processors

Table of Contents

FOREWORD

PREFACE

ACKNOWLEDGEMENTS

Chapter 1 : Introduction
 1.1 Where are microcontrollers used?
 1.2 What is a Microcontroller?
 1.3 PIC18F45K22 Microcontroller
 1.4 Microcontroller Applications
 1.5 Development Tools
 1.6 Nomenclature and Technical Terms

Chapter 2 : CPU Architecture
 2.1 INTRODUCTION
 2.2 Von Neumann Architecture
 2.3 Harvard Architecture
 2.4 RISC versus CISC
 2.5 Pipelining
 2.6 Overall Picture
 2.6.1 Program Memory
 2.6.2 Hardware Stack
 2.6.3 Data Memory
 2.6.4 Arithmetic Logic Unit
 2.6.5 Instruction Decode and Control Unit
 2.6.6 Oscillator Circuit
 2.6.7 Power Considerations
 2.6.8 Reset
 2.6.9 High/Low Voltage Detect (HLVD)
 2.6.10 Ports and Peripherals
 2.7 Summary

Chapter 3 : Instruction Set
 3.1 Introduction
 3.2 Addressing Modes
 3.2.1 Direct Addressing Mode
 3.2.2 Indirect Addressing Mode
 3.3 STATUS Register
 3.3.1 Zero Bit (Z)
 3.3.2 Carry Bit (C)
 3.3.3 Negative Bit (N)
 3.3.4 Digit Carry Bit (DC)
 3.3.5 Overflow Bit (OV)
 3.4 Data Move Instructions
 3.5 ALU Oriented Instructions
 3.5.1 Operations on WREG and Register f
 3.5.2 Operations on WREG and Literal k
 3.5.3 Byte-Oriented Operations on f
 3.5.4 Bit-Oriented File Register Operations
3.5.5 The daw Instruction
3.6 Control and PC-Related Instructions
 3.6.1 The goto Instruction
 3.6.2 The bra Instruction
 3.6.3 Conditional Branch Instructions
 3.6.4 The call, rcall and return instructions
 3.6.5 The retlw Instruction
 3.6.6 The retfie Instruction
 3.6.7 The reset, sleep and clrwdt Instructions
3.7 Program Memory Read/Write Instructions
 3.7.1 The tblrd Instruction
 3.7.2 The tblwt Instruction
3.8 Conclusion

Chapter 4: Macros and Subroutines
 4.1 Subroutines
 4.2 Pre-Declared Variables
 4.3 Basic Macros
 4.4 16-bit Macros
 4.5 Software Stack and Related Macros
 4.6 Subroutines
 4.7 Delay Routines
 4.8 Strings in Program Space
 4.9 PIC18F45K22 Data Memory Map
 4.10 Conclusion

Chapter 5: Migrating From Assembly To C
 5.1 Introduction
 5.2 Integer and Floating-point Types
 5.3 C Language Operators
 5.4 Elementary Examples
 5.5 Delay Routines
 5.6 Conversion Routines
 5.7 EEPROM Read/Write Routines
 5.8 Built-in C18 Macros
 5.9 Guidelines For Sound Programming Habits

Chapter 6: Input/Output Ports
 6.1 Introduction
 6.2 PORTA
 6.3 PORTB
 6.4 PORTC
 6.5 PORTD
 6.6 PORTE
 6.7 Conclusion

Chapter 7: Interrupts and Applications
 7.1 Introduction
 7.2 Interrupt Mechanism
 7.3 Case Study 1 - Timer0
 7.4 Case Study 2 – INT0, INT1 and INT2.
 7.5 Case Study 3 – Interrupt-On-Change and Keyboard Encoding
 7.6 Case Study 4 – Multiplexed Displays
 7.7 Conclusion

Chapter 8: Alphanumeric Liquid Crystal Displays
 8.1 Introduction
 8.2 LCD Interface and Functionality
8.3 Basic LCD Routines
8.4 LCD Applications
8.5 Conclusion

Chapter 9: Analog-to-Digital Conversion
9.1 Introduction
9.2 Sample-and-Hold Circuitry
9.3 Successive Approximation ADC
9.4 A/D Functionality and Associated registers
9.5 A/D Operation Summary
9.6 A/D Transfer Function
9.7 Instrumentation Examples
9.8 Conclusion

Chapter 10: Timers and Associated Hardware
10.1 Introduction
10.2 Timer1/3/5
10.3 Timer2/4/6
10.4 Pulse Width Modulation (PWM)
10.5 Output Compare
10.6 Input Capture
10.7 Conclusion

Chapter 11: State Machines
11.1 Introduction
11.2 Garage Door Opener
11.3 Thunderbird Taillights
11.4 Traffic-Light Controller
11.5 Electronic Ping-Pong Game
11.6 Programmable Timer
11.7 Conclusion

Chapter 12: Asynchronous Serial Communications
12.1 Introduction
12.2 Data Packet
12.3 EUSART Transmit Block
12.4 EUSART Receive Block
12.5 Control Registers
12.6 EUSART Interface to a Personal Computer
12.7 Remote Control Application
12.8 Short Message Service
12.9 Conclusion

Chapter 13: The Serial Peripheral Interface
13.1 Introduction
13.2 The Basic Principle
13.3 The Multi-Slave Configuration
13.4 Hardware Configuration/Functionality
13.5 SPI Timing Diagram
13.6 Control Registers
13.7 SPI Interface to the MAX7219/MAX7221 Display Drivers
13.8 SPI Peripheral Devices
13.9 Conclusion

Chapter 14: I2C Interface
14.1 Introduction
14.2 The I2C Data Format
14.3 The I2C Transactions
14.4 I2C Data Rate