There exists a wealth of information about inquiry and about science, technology, engineering, and mathematics (STEM), but current research lacks meaningfully written, thoughtful applications of both topics.

Cases on Inquiry through Instructional Technology in Math and Science represents the work of many authors toward meaningful discourse of inquiry used in STEM teaching. This book presents insightful information to teachers and teacher education candidates about using inquiry in the real classroom, case studies from which research suggests appropriate uses, and tangible direction for creating their own inquiry based STEM activities. Sections take the reader logically through the meaning of inquiry in STEM teaching, how to use technology in modern classrooms, STEM projects which successfully integrate inquiry methodology, and inquiry problem solving within STEM classrooms with the aim of creating activities and models useful for real-world classrooms.

Topics Covered:

- Assessing Science Inquiry
- Collaborative Scientific Project Management
- Concept Maps
- Digital Stories
- Inquiry-Based Learning and Robotics
- Mobile Technology in the Classroom
- Science Education Research
- Serious Educational Games (SEGs)
- Technology and the Preschooler
- Visualizing Content

Market: This premier publication is essential for all academic and research library reference collections. It is a crucial tool for academicians, researchers, and practitioners and is ideal for classroom use.

Lesia Lennex received her doctorate in Curriculum and Instruction from the University of Tennessee, Knoxville. She is currently an Associate Professor of Education in the Department of Middle and Secondary Education at Morehead State University, Morehead, Kentucky. Dr. Lennex holds degrees in biology, anthropology, and curriculum and instruction. She researches, presents, and publishes in technology issues and integration for P-16 schools, NCATE accreditation Web sites, biology curriculum, and ethnobotany. Dr. Lennex is a former high school science teacher in biology, chemistry, physics, and ecology. In its founding year, she was the Editor-in-Chief of Kentucky Learning Depot, an online learning repository from the Council on Postsecondary Education 2009-2010. Dr. Lennex is the Chair of Information Technology Education SIG for the Society for Information Technology and Teacher Education (SITE) 2008-2014.
Section 1: The Meaning of Inquiry in STEM Teaching

Chapter 1
Using Levels of Inquiry in the Classroom
Rylander Jeffrey (Glenbrook South High School, USA)

Chapter 2
STEMing the Tide:
Childers Pamela B. (The McCallie School, USA)
Lowry Michael J. (The McCallie School, USA)

Chapter 3
Concept Maps as Tools for Learning Scientific Language
Scheider Noah L. (Washington State University, Pullman, USA)
Aksesn Oluwaseun (Washington State University, Pullman, USA)

Chapter 4
SMARTHE:
Melteilou-Mavrotheris Maria (European University Cyprus, Cyprus)
Papast forcedou Ef (Cyprus Ministry of Education, Cyprus)

Chapter 5
When Are We Heading To?
Kumtepe Evrim Genc (Anadolu University, Turkey)
Boukaya Mustan (Anadolu University, Turkey)
Aydin Irem Erem (Anadolu University, Turkey)

Section 2: How to use Technology in Modern Classrooms

Chapter 7
Technology and the Preschooler:
Lennex Lesia (Morehead State University, USA)
Nettleton Kimberley Fletcher (Morehead State University, USA)
Murphy Nikita (Morehead State University, USA)

Chapter 8
Mobile Technology in the Classroom
Barnes Jimmy (Jacksonville State University, USA)

Chapter 9
Fostering Inquiry in Science among Kinesthetic Learners through Design and Technology
Amir Nazir (Greenview Secondary School, Singapore)
Subhmanan R. (Nanyang Technological University, Singapore)

Section 3: STEM Projects that Successfully Integrate Inquiry Methodology

Chapter 10
Learning Statistics with a Multimedia Resource
Aksesn Oluwaseun O. (Washington State University, Pullman, USA)

Chapter 11
Science Project, Kim-Jang:
Shon Mee-Ryoung (Morehead State University, USA)
Jeon Sun Ok (Hallym College, Chuncheon City, South Korea)
Hammonds Karen O. (Morehead State University, USA)

Chapter 12
Educational Robotics Meets Inquiry-Based Learning:
Esguichi Amy (Bloomfield College, USA)
Uribe Lizbeth (The School at Columbia University, USA)

Chapter 13
Making and Thinking Movies in the Science Classroom
Angelone Lauten (The Ohio State University, USA)

Chapter 14
Getting to the Core:
Cleary Patricia (University of Wisconsin, Parkside, USA)

Chapter 15
Using Digital Stories in a College Level Course on Rocks and Minerals:
Bhattacharyya Prajukti (University of Wisconsin, Whitewater, USA)

Section 4: Inquiry Problem Solving within STEM Classrooms

Chapter 16
Cultivating Student-Teachers’ Problem-Solving Abilities by Promoting Utilization of Various Ways of Thinking through E-Learning and E-Portfolio Systems
Matsuda Toshiki (Tokyo Institute of Technology, Japan)

Chapter 17
Serious Educational Games (SEGs) and Student Learning and Engagement with Scientific Concepts
Holmes Shawn Y. (North Carolina State University, USA)
Annette Leonard A. (George Mason University, USA)
Sears Matthew (North Carolina New Schools Project, USA)

Chapter 18
LOGO and Elementary Mathematics Education in Portugal
Carvalho Paulo (Cávado Sul Group of Schools, Portugal)
Fidora Pedro (University of Minho, Portugal)
Gomes Alexandra (University of Minho, Portugal)
Matheo Ema (University of Minho, Portugal)

Chapter 19
An Interdisciplinary Exploration of the Climate Change Issue and Implications for Teaching STEM through Inquiry
Urban Michael J. (Bemidji State University, USA)
Marker Elaine (Delaware State University, USA)
Fulvo David A. (Walden University, USA)

Chapter 20
Teaching the Greenhouse Effect with Inquiry-Based Computer Simulations:
Cohen Edward (Hasle Township Schools, USA)
Zimmerman Timothy D. (Rutgers University, USA)

Chapter 21
Visualizing Content for Computational Geometry Courses
Fragoudakis Charitos (National Technical University of Athens, Greece)
Karampatsis Markos (National Technical University of Athens, Greece)
Name: ________________________________	□ Enclosed is check payable to IGI Global in US Dollars, drawn on a US-based bank
Organization: ________________________________	□ Credit Card □ Mastercard □ Visa □ Am. Express
Address: ________________________________	3 or 4 Digit Security Code: ________________________________
City, State, Zip: ________________________________	Name on Card: ________________________________
Country: ________________________________	Account #: ________________________________
Tel: ________________________________	Expiration Date: ________________________________
Fax: ________________________________	
E-mail: ________________________________	