Operations Management Research and Cellular Manufacturing Systems: Innovative Methods and Approaches

Vladimír Modrák (Technical University of Kosice, Slovakia) and R. Sudhakara Pandian (Kalasalingam University, India)

Traditional manufacturing systems are no longer able to satisfy new requirements introduced by increasingly global markets, resulting in the need for automated industries with high performance manufacturing systems. The integration between design and manufacturing and utilization of new production systems will lead to more efficient, productive operation that benefits from a short set-up time, low work-in-process inventory (WIP), and high machine utilization.

Operations Management Research and Cellular Manufacturing Systems: Innovative Methods and Approaches presents advancements in the field of operations management, focusing specifically on topics related to layout design for manufacturing environments. Chapters in this book discuss the arrangement of resources used in batch production and provide perspectives on technological, organizational, and social perspectives of cellular manufacturing systems. This book will support teachers, doctoral scholars, decision makers in industry, and students educated in operations management.

Topics Covered:
- Cluster Analysis for Cell Formation
- Connected and Disconnected Cellular Systems
- Flexible Manufacturing Cells
- Flow Stop Scheduling Problems
- Genetic and Hybrid Algorithms in Cell Formation
- Graph Theory and Design of Manufacturing Cells
- Lean Thinking Based Investment Planning
- Non-Traditional Optimization Algorithms
- Operator Assignment Decisions
- Petri Net Models

Print: US $185.00 | Perpetual: US $280.00 | Print + Perpetual: US $370.00

Market: This premier publication is essential for all academic and research library reference collections. It is a crucial tool for academicians, researchers, and practitioners and is ideal for classroom use.

Vladimír Modrák is Professor of Manufacturing Technology and head of Department of Manufacturing Management at the Technical University of Kosice. He obtained a PhD degree in Mechanical Engineering at the same University in 1989. His research interests include manufacturing logistics, cellular manufacturing, and other related disciplines. Prof. Modrák is Vice-Editor in Chief of Slovak Journal on Manufacturing Engineering and editorial board member of several international journals. He also served as session chair and chairman at international conferences. He lectured as Visiting Professor at University of Perugia (Italy), University of Applied Sciences Wildau (Germany), University of Czestochowa (Poland), and held seminars at the Keyworth Institute at the University of Leeds (UK), University of Salerno (Italy), and University of Perugia. Presently, he is also chairman of the Commission for Doctoral Study in the field of Industrial Engineering. Prof. Modrák is co-author and editor of several books on manufacturing logistics, manufacturing technology, and other topics.
Section 1: Methods and Trends in Manufacturing Cell Formation

Chapter 1
Developments in Modern Operations Management and Cellular Manufacturing
Modrák Vladimír (Technical University of Kosice, Slovakia (Slovak Republic))
Semančo Pavol (Technical University of Kosice, Slovakia (Slovak Republic))

Chapter 2
Decision Support Framework for the Selection of a Layout Type
Slomp Jannes (University of Groningen, The Netherlands)
Bokhorst Jos A.C. (University of Groningen, The Netherlands)

Chapter 3
Comparison of Connected vs. Disconnected Cellular Systems:
Süer Gürsel A. (Ohio University, USA)
Lobo Royston (S.S. White Technologies Inc., USA)

Chapter 4
Design of Manufacturing Cells Based on Graph Theory
Ribeiro José Francisco Ferreira (University of São Paulo, Brazil)

Chapter 5
Genetic vs. Hybrid Algorithm in Process of Cell Formation
Pandian R. Sudhakra (Kalasalingam University, India)
Semančo Pavol (Technical University of Kosice, Slovakia)
Knuth Peter (Technical University of Kosice, Slovakia)

Chapter 6
Design of Cellular Manufacturing System Using Non-Traditional Optimization Algorithms
Venkumar P (Kalasalingam University, India)
Sekar K Chandra (Sardar Raja College of Engineering, India)

Chapter 7
Similarity-Based Cluster Analysis for the Cell Formation Problem
Manzini Riccardo (University of Bologna, Italy)
Bortolini Marco (University of Bologna, Italy)

Chapter 8
An Estimation of Distribution Algorithm for Part Cell Formation Problem
Abdulraheem Saber (University of Sfax, Tunisia)
Jafrosi Bassem (University of Sfax, Tunisia)
Rebai Abdelwahab (University of Sfax, Tunisia)

Chapter 9
Cellular or Functional layout?
Jerbi Abdessalem (University of Sfax, Tunisia)
Chitourou Heili (University of Sfax, Tunisia)

Section 2: Production Planning and Scheduling in Cellular Manufacturing Environment

Chapter 10
Cell Loading and Family Scheduling for Jobs with Individual Due Dates
Süer Gürsel A. (Ohio University, USA)

Chapter 11
Production Planning Models using Max-Plus Algebra
Namibar Arun N. (California State University, USA)
Imare Aleskey (Ohio University, USA)
Judd Robert P. (Ohio University, USA)
Carlos Hector J. (University of Puerto Rico - Mayaguez, Puerto Rico)

Chapter 12
Operator Assignment Decisions in a Highly Dynamic Cellular Environment
Süer Gürsel A. (Ohio University, USA)
Alhawari Omar (Royal Hashemite Court, Jordan)

Chapter 13
Alternative Heuristic Algorithm for Flex Shop Scheduling Problem
Modrák Vladimír (Technical University of Kosice, Slovakia)
Pandian R. Sudhakra (Kalasalingam University, India)
Semančo Pavol (Technical University of Kosice, Slovakia)

Chapter 14
Optimization and Mathematical Programming to Design and Planning Issues in Cellular Manufacturing Systems under Uncertain Situations
Ghezavati Valiastina (Islamic Azad University, Iran)
Saidi-Mehrabad Mohammad (University of Science and Technology, Iran)
Jabal-Arnell Mohammad Saeed (University of Science and Technology, Iran)
Maki Ahmad (University of Science and Technology, Iran)
Sadjadi Seyed Jatur (University of Science and Technology, Iran)

Chapter 15
Planning Process Families with PROGRES
Zhang Linda L. (IESEG School of Management, France)

Section 3: Related Issues to Cellular Manufacturing Systems

Chapter 16
Lean Thinking Based Investment Planning at Design Stage of Cellular/Hybrid Manufacturing Systems
Darmasrahda M. Bulent (Istanbul Technical University, Turkey)
Kaya Goksu (Istanbul Technical University, Turkey)

Chapter 17
Performance Comparison of Cellular Manufacturing Configurations in Different Demand Profiles
Renna Paolo (University of Basilicata, Italy)
Ambriico Michele (University of Basilicata, Italy)

Chapter 18
Petri Net Model Based Design and Control of Robotic Manufacturing Cells
Yasuda Gen’ichi (Nagasaki Institute of Applied Science, Japan)

Chapter 19
Equipment Replacement Decisions Models with the Context of Flexible Manufacturing Cells
Dima Ioan Constantin (Valahia University of Targoviste, Romania)
Grabara Janusz (Czestochowa University of Technology, Poland)
Nowicka-Skowron Maria (Czestochowa University of Technology, Poland)

Chapter 20
Multi-Modal Assembly-Support System for Cellular Manufacturing
Duan Feng (Nankai University, China)
Tan Jeffrey Too Chuan (The University of Tokyo, Japan)
Kato Ryo (The University of Electro-Communications, Japan)
Zhu Chi (Maebashi Institute of Technology, Japan)
Arai Tamio (The University of Tokyo, Japan)
Name: __________________________________ _____________ _ _
Organization: ___ _ _
Address: ________________________________ ____________ __ _
City, State, Zip: _____________________________________ __
Country: _______________________________ ____________ _ ___
Tel: __ __
Fax: ___ __ ___
E-mail: __ __ __

☐ Enclosed is check payable to IGI Global in US Dollars, drawn on a US-based bank

☐ Credit Card ☐ Mastercard ☐ Visa ☐ Am. Express

3 or 4 Digit Security Code: ________________________________
Name on Card: __
Account #: __
Expiration Date: __

Order Your Copy Today!