This issue consists of two extended articles from two international conferences: The 3rd International Conference on Advances in Mobile Multimedia (MoMM 2005) and the 7th International Conference on Information Integration and Web-Based Applications and Services (iiWAS 2005). Both conferences were held in September 2005 in Kuala Lumpur, Malaysia. The conferences attracted articles from academics and researchers from all over the world. The joint event was a great success and attracted the highest number of participants in the history of International Organization for Information Integration and Web-Based Applications & Services (@WAS). In addition, the guest editors reviewed and accepted three additional articles from among the regular submissions to the editors of the IJITWE.

The topics of the articles in this issue vary from topology information in wireless networks to data modelling for Web data warehouse. The works presented in these articles are summarised as follows.

In their extended iiWAS 2005 paper, Safar and Ebrahimi propose an algorithm to address continuous K nearest neighbor (KNN) queries in spatial network database based on the progressive incremental network expansion (PINE) technique. The authors use the enhanced dynamic alternate routing (eDAR) algorithm as opposed to the intersection examination algorithm in Voronoi-based network nearest neighbor (VN3). They also compared the eDAR algorithm with the original dynamic alternate routing (DAR) algorithm from their previous work. The experiment shows that the proposed approach has a better response time and requires fewer KNN computations.

In order to return a result, a search engine has to search massive amounts of data. For this purpose, an efficient search is of utmost importance. In the next article, AlJa’am, Jaoua, Hasnah, Hassan, Mohamed, Mosaid, Saleh, Abdullah, and Cherif propose a new text summarization approach that can be used for this purpose. The approach uses conceptual data classification to extract the most interacting sentences and to deliver the text summary. Since the approach does not use semantic and grammatical concepts, the approach can be used in different languages with different sizes and topics.

In the next article, Sivaradje, Nakkeeran, and Dananjayan extend their MoMM 2005 article, which discusses mobility prediction in wireless/mobile positioning. The authors propose a prediction technique using GIS/GPS/Cellular integration-based road topology information. The technique gives accurate prediction results, which helps in maintaining a better QoS and resource management in wireless networks. Flexible channel assignment implemented using the information obtained from this proposed technique also offers a better trade off between forced transactions and call blocking probabilities.

Optimizing XML query process is an important aspect in XML data management. Special XML queries, such as those with pure and negated containments, cannot be optimized
by using regular structural join. In this article, Che proposes another approach to deal with this kind of XML query. He applies a deterministic approach for XML query optimization, proposes dedicated algorithms for special containments operations, and implements the algorithms. The experimentation confirmed the validity and performance advantage of the proposed approach.

In the last article, Le, Rahayu, and Taniar highlight the need for a new technique for developing a Web data warehouse. With the larger amount of available data and the higher variety of data format, there is a need for a methodology that can safely integrate this data. They propose a Web data warehouse integration technique that combines data and documents from different underlying documents and database design approaches. The experiment shows that by using the proposed technique, the OLAP queries can be made more efficient.

Eric Pardede received his Master’s of Information Technology at La Trobe University, Australia. Currently, he is completing his PhD under the supervision of Dr. Johanna Wenny Rahayu and Dr. David Taniar. He is now an associate lecturer at the same university. He has published several research articles appeared in international journals and conference proceedings. His research area is in data modelling and query optimization for object-relational databases and XML databases.

Dr. David Taniar received a PhD degree in databases from Victoria University, Australia, in 1997. He is now a senior lecturer at Monash University, Australia. He has published more than 100 research articles and edited a number of books in the web technology series. He is in the editorial board of a number of international journals, including Data Warehousing and Mining, Business Intelligence and Data Mining, Mobile Information Systems, Mobile Multimedia, Web Information Systems, and Web and Grid Services. He has been elected as a fellow of the Institute for Management of Information Systems (UK).