CONTENTS

Preface

List of Symbol

CHAPTER 1 INTRODUCTION
1.1 Stability of a Hydrodynamic System
1.2 Magnetohydrodynamics
1.3 The Basic Equations of Stability
 1.3.1 Equation of State
 1.3.2 Equation of Continuity
 1.3.3 Equation of Motion
 1.3.4 Equation of Energy
1.4 Hydrodynamic and Hydromagnetic Stability
1.5 Thermal Instability
1.6 Thermosolutal Instability
1.7 Boussinesq Approximation
1.8 Continuum Hypothesis
1.9 Non-dimensional Parameters
1.10 Method of determining Stability
 1.10.1 Perturbation Method
 1.10.2 Energy Method
 1.10.3 Normal Modes Method
 1.10.4 Galerkin Method
1.11 Boundary Conditions
1.12 Non-Newtonian Fluid
1.13 Nanofluids and Nanofluids Technologies
1.14 Preparation Methods for Nanofluids
 1.14.1 Two-Step Method
 1.14.2 One-Step Method
 1.14.3 Other Methods
1.15 Potential Features of Nanofluids
1.16 Applications of Nanofluids
1.17 Convection in Nanofluids
1.18 Governing Equations for Nanofluids
1.19 Effect of Various Factors on Stability of Nanofluid
 1.19.1 Effect of Rotation
 1.19.2 Effect of Magnetic Field
 1.19.3 Hall Effect
 1.19.4 Convection in Porous Media
 1.19.5 Effect of Internal Heat
 1.19.6 Variable Gravity

REFERENCES

CHAPTER 2 THERMAL CONVECTION IN A HORIZONTAL LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID
2.1 Introduction
2.2 Mathematical Formulations of the Problem
 2.2.1 The Physical Problem
 2.2.2 Assumptions
 2.2.3 Governing Equations
 2.2.4 Basic Solutions
 2.2.5 Perturbation Solutions
2.3 Normal Modes Analysis
2.4 Method of Solution
2.5 Linear Stability Analysis
 2.5.1 Stationary Convection
 2.5.2 Oscillatory Convection
2.6 Results and Discussion
2.7 Principle of Exchange of Stability
2.8 Case of Overstability
2.9 Conclusions

REFERENCES

CHAPTER 3 EFFECT OF ROTATION ON THE ONSET OF THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID
3.1 Introduction
3.2 Mathematical Formulations of the Problem
 3.2.1 The Physical Problem
 3.2.2 Assumptions
 3.2.3 Governing Equations
 3.2.4 Basic Solutions
 3.2.5 Perturbation Solutions
3.3 Normal Modes Analysis
3.4 Method of Solution
3.5 Linear Stability Analysis
3.6 Stationary Convection
3.7 Results and Discussion
3.8 Conclusions

REFERENCES

CHAPTER 4 THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID IN THE PRESENCE OF VERTICAL MAGNETIC FIELD

4.1 Introduction
4.2 Mathematical Formulations
 4.2.1 The Physical Problem
 4.2.2 Assumptions
 4.2.3 Governing Equations
 4.2.4 Basic Solutions
 4.2.5 Perturbation Solutions
4.3 Normal Modes Analysis
4.4 Method of solution
4.5 Linear Stability Analysis
4.6 Stationary Convection
4.7 Results and Discussion
4.8 Conclusions

REFERENCES

CHAPTER 5 COMBINED EFFECT OF ROTATION AND MAGNETIC FIELD ON THE THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID

5.1 Introduction
5.2 Mathematical Formulations of the Problem
 5.2.1 The Physical Problem
 5.2.2 Assumptions
 5.2.3 Governing Equations
 5.2.4 Basic Solutions
 5.2.5 Perturbation Solutions
5.3 Normal Modes Analysis
5.4 Method of Solution
5.5 Linear Stability Analysis
5.6 Results and Discussion
5.7 Conclusions

REFERENCES
CHAPTER 6 THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID IN A POROUS MEDIUM: DARCY MODEL

6.1 Introduction
6.2 Mathematical Formulations of the Problem
 6.2.1 The Physical Problem
 6.2.2 Assumptions
 6.2.3 Governing Equations
 6.2.4 Basic Solutions
 6.2.5 Perturbation Solutions
6.3 Normal Modes Analysis
6.4 Method of Solution
6.5 Linear Stability Analysis
 6.5.1 Stationary Convection
 6.5.2 Oscillatory Convection
6.6 Results and Discussion
6.7 Case of Overstability
6.8 Conclusions
REFERENCES

CHAPTER 7 THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID IN A POROUS MEDIUM: BRINKMAN MODEL

7.1 Introduction
7.2 Mathematical Formulations of the Problem
 7.2.1 The Physical Problem
 7.2.2 Assumptions
 7.2.3 Governing Equations
 7.2.4 Basic Solutions
 7.2.5 Perturbation Solutions
7.3 Normal Modes Analysis
7.4 Method of Solution
7.5 Linear Stability Analysis
 7.5.1 Stationary Convection
 7.5.2 Oscillatory Convection
7.6 Results and Discussion
7.7 Conclusions
REFERENCES
CHAPTER 8 EFFECT OF VARIABLE GRAVITY ON THE THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID

8.1 Introduction
8.2 Mathematical Formulations of the Problem
 8.2.1 The Physical Problem
 8.2.2 Assumptions
 8.2.3 Governing Equations
 8.2.4 Basic Solutions
 8.2.5 Perturbation Solutions
8.3 Normal Modes Analysis
8.4 Method of Solution
8.5 Linear Stability Analysis
 8.5.1 Stationary Convection
 8.5.2 Oscillatory Convection
8.6 Results and Discussion
8.7 Conclusions
REFERENCES

CHAPTER 9 THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID WITH HALL CURRENT

9.1 Introduction
9.2 Mathematical Formulations of the Problem
 9.2.1 The Physical Problem
 9.2.2 Assumptions
 9.2.3 Governing Equations
 9.2.4 Basic Solutions
 9.2.5 Perturbation Solutions
9.3 Normal Modes Analysis
9.4 Method of Solution
9.5 Linear Stability Analysis
9.6 Results and Discussion
9.7 Conclusions
REFERENCES

CHAPTER 10 EFFECT OF INTERNAL HEAT SOURCE ON THE ONSET OF THERMAL CONVECTION IN A LAYER OF MAXWELLIAN VISCO-ELASTIC NANOFLUID

10.1 Introduction
10.2 Mathematical Formulations of the Problem
 10.2.1 The Physical Problem
12.5 Linear Stability Analysis
12.6 Results and Discussion
12.7 Conclusions

REFERENCES