Cognitive Processes by Using Finite State Machines

Cognitive Processes by Using Finite State Machines

Ismael Rodríguez (Universidad Complutense de Madrid, Spain), Manuel Núñez (Universidad Complutense de Madrid, Spain) and Fernando Rubio (Universidad Complutense de Madrid, Spain)
DOI: 10.4018/jcini.2007070104
OnDemand PDF Download:
$37.50

Abstract

Finite State Machines, in short FSMs, are formalisms that have been used for decades to describe the behavior of systems. They can also provide an intelligent agent with a suitable formalism for describing its own beliefs about the behavior of the world surrounding it. In fact, FSMs are the suitable acceptors for right linear languages, which are the simplest languages considered in Chomsky’s classification of languages. Since Chomsky proposes that the generation of language (and, indirectly, any mental process) can be expressed through a kind of formal language, it can be assumed that cognitive processes can be formulated by means of the formalisms that can express those languages. Hence, we will use FSMs as a suitable formalism for representing (simple) cognitive models. We present an algorithm that, given an observation of the environment, produces an FSM describing an environment behavior that is capable to produce that observation. Since an infinite number of different FSMs could have produced that observation, we have to choose the most feasible one. When a phenomenon can be explained with several theories, Occam’s razor principle, which is basic in science, encourages choosing the simplest explanation. Applying this criterion to our problem, we choose the simplest (smallest) FSM that could have produced that observation. An algorithm is presented to solve this problem. In conclusion, our framework provides a cognitive model that is the most preferable theory for the observer, according to the Occam’s razor criterion.

Complete Article List

Search this Journal:
Reset
Open Access Articles: Forthcoming
Volume 11: 4 Issues (2017): Forthcoming, Available for Pre-Order
Volume 10: 4 Issues (2016): 2 Released, 2 Forthcoming
Volume 9: 4 Issues (2015)
Volume 8: 4 Issues (2014)
Volume 7: 4 Issues (2013)
Volume 6: 4 Issues (2012)
Volume 5: 4 Issues (2011)
Volume 4: 4 Issues (2010)
Volume 3: 4 Issues (2009)
Volume 2: 4 Issues (2008)
Volume 1: 4 Issues (2007)
View Complete Journal Contents Listing