A Hybrid Approach for Data Warehouse View Selection

A Hybrid Approach for Data Warehouse View Selection

Biren Shah (University of Louisiana at Lafayette, USA), Karthik Ramachandran (University of Louisiana at Lafayette, USA) and Vijay Raghavan (University of Louisiana at Lafayette, USA)
Copyright: © 2006 |Pages: 37
DOI: 10.4018/jdwm.2006040101
OnDemand PDF Download:
$37.50

Abstract

Materialized view selection is one of the crucial decisions in designing a data warehouse for optimal efficiency. Static selection of views may materialize certain views that are not beneficial as the data and usage trends change over time. On the contrary, dynamic selection of views works better only for queries demanding a high degree of aggregation. These facts point to the need for a technique that combines the improved response time of the static approach and the automated tuning capability of the dynamic approach. In this article, we propose a hybrid approach for the selection of materialized views. The idea is to partition the collection of all views into a static and dynamic set such that views selected for materialization from the static set are persistent over multiple query (and maintenance) windows, whereas views selected from the dynamic set can be queried and/or replaced on the fly. Highly aggregated views are selected on the fly based on the query access patterns of users, whereas the more detailed static set of views plays a significant role in the efficient maintenance of the dynamic set of views and in answering certain detailed view queries. We prove that our proposed strategy satisfies the monotonicity requirements, which is essential in order for the greedy heuristic to deliver competitive solutions. Experimental results show that our approach outperforms Dynamat, a well-known dynamic view management system that is known to outperform optimal static view selection.

Complete Article List

Search this Journal:
Reset
Open Access Articles: Forthcoming
Volume 13: 4 Issues (2017): Forthcoming, Available for Pre-Order
Volume 12: 4 Issues (2016)
Volume 11: 4 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing