Important Attributes Selection Based on Rough Set for Speech Emotion Recognition

Important Attributes Selection Based on Rough Set for Speech Emotion Recognition

Jian Zhou (Anhui University and Chongqing University of Posts and Telecommunications, China), Guoyin Wang (Chongqing University of Posts and Telecommunications, China) and Yong Yang (Chongqing University of Posts and Telecommunications, China)
DOI: 10.4018/jcini.2009070105
OnDemand PDF Download:
$37.50

Abstract

Speech emotion recognition is becoming more and more important in such computer application fields as health care, children education, etc. In order to improve the prediction performance or providing faster and more cost effective recognition system, an attribute selection is often carried out beforehand to select the important attributes from the input attribute sets. However, it is time-consuming for traditional feature selection method used in speech emotion recognition to determine an optimum or suboptimum feature subset. Rough set theory offers an alternative, formal and methodology that can be employed to reduce the dimensionality of data. The purpose of this study is to investigate the effectiveness of Rough Set Theory in identifying important features in speech emotion recognition system. The experiments on CLDC emotion speech database clearly show this approach can reduce the calculation cost while retaining a suitable high recognition rate.

Complete Article List

Search this Journal:
Reset
Open Access Articles: Forthcoming
Volume 11: 4 Issues (2017): Forthcoming, Available for Pre-Order
Volume 10: 4 Issues (2016)
Volume 9: 4 Issues (2015)
Volume 8: 4 Issues (2014)
Volume 7: 4 Issues (2013)
Volume 6: 4 Issues (2012)
Volume 5: 4 Issues (2011)
Volume 4: 4 Issues (2010)
Volume 3: 4 Issues (2009)
Volume 2: 4 Issues (2008)
Volume 1: 4 Issues (2007)
View Complete Journal Contents Listing