Improved Data Partitioning for Building Large ROLAP Data Cubes in Parallel

Improved Data Partitioning for Building Large ROLAP Data Cubes in Parallel

Ying Chen, Frank Dehne, Todd Eavis, A. Rau-Chaplin
Copyright: © 2006 |Pages: 26
DOI: 10.4018/jdwm.2006010101
OnDemand:
(Individual Articles)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

This paper presents an improved parallel method for generating ROLAP data cubes on a shared-nothing multiprocessor based on a novel optimized data partitioning technique. Since no shared disk is required, our method can be used for highly scalable processor clusters consisting of standard PCs with local disks only, connected via a data switch. Experiments show that our improved parallel method provides optimal, linear, speedup for at least 32 processors. The approach taken, which uses a ROLAP representation of the data cube, is well suited for large data warehouses and high dimensional data, and supports the generation of both fully materialized and partially materialized data cubes.

Complete Article List

Search this Journal:
Reset
Volume 20: 1 Issue (2024)
Volume 19: 6 Issues (2023)
Volume 18: 4 Issues (2022): 2 Released, 2 Forthcoming
Volume 17: 4 Issues (2021)
Volume 16: 4 Issues (2020)
Volume 15: 4 Issues (2019)
Volume 14: 4 Issues (2018)
Volume 13: 4 Issues (2017)
Volume 12: 4 Issues (2016)
Volume 11: 4 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing