The Adoption of Service-Oriented Architecture (SOA) in Managing Next Generation Networks (NGNs)

The Adoption of Service-Oriented Architecture (SOA) in Managing Next Generation Networks (NGNs)

Konstantinos S. Kotsopoulos (University of Bradford, UK)
DOI: 10.4018/978-1-60566-108-7.ch008
OnDemand PDF Download:
$37.50

Abstract

Next Generation Networks (NGNs) will accommodate heterogeneous architectures that need to be managed in order to provide services with high QoS to the users. The complexity of NGNs will give new challenges to network operators and service providers. The aim of this chapter is to present the complexity and the problems in the NGN management plane and to introduce a new framework that will solve many problems that operators face today. This chapter is separated in two parts. The first part presents the management architecture for NGNs according to ITU-T M.3060 recommendation. The second part introduces the concept of the Service Oriented Architecture (SOA) for managing the Next Generation Networks.
Chapter Preview
Top

Introduction

Over the last few years, many network operators have put into practise network upgrade plans to implement Next Generation Networks (NGNs). The desire for mobility and the rapid expansion of multimedia, digital traffic, and converged services are driving the need for networks that are packet-based, able to provide all kind of services that are available in any place, at any time, and on any device. NGNs are based on a new set of technologies that will transform the way that we communicate today, and will revolutionise the way that services will be delivered in the future. In NGNs, applications and services, such as voice data and video, are separated from the underlying transport and will be organized into packets and delivered on an integrated IP network. The network architectures, services, and traffic pattern in NGNs will radically differ from existing circuit-switched and IP-based networks. Furthermore, the need for global roaming across different networks (mobile, wireless cellular networks, satellite or fixed-LAN) couple with the increasing number of users and terminals require the redesign of the existing architectures right from the infrastructure physical layer to the top business process layer.

One of the most challenging tasks for network operators and service providers is the management of NGNs. NGNs will accommodate different architectures and will provide services with different QoS to end users. The International Telecommunication Union (ITU) is the leading standardisation body in the telecommunication sector. ITU-T M.3060 recommendation (ITU-T M.3060, 2006) proposes the management requirements for managing NGNs to support business processes and the management requirements of network operators and service providers to plan, provision, install, maintain, operate and administer NGN resources and services.

The NGN Architecture

The ITU defines the term Next-Generation Network (NGN) in Recommendation Y.2001 (ITU-T Y.2001, 2004) as a packet-based network able to provide telecommunication services and able to make use of multiple broadband, QoS-enabled transport technologies and in which service-related functions are independent from underlying transport-related technologies. It offers unrestricted access for users to different service providers. It supports generalized mobility, which will allow consistent and ubiquitous provision of services to users.

The NGN architecture, as it is recommended by the ITU, is divided into two independent functional stratums: the Service stratum and the Transport stratum as shown in Figure 1. By separating the Transport stratum from the Service stratum, the system provides flexibility in several aspects. One of the benefits is the installation independency. This means that the equipment used on stratum is independent of the equipment that is used on other stratum, allowing flexible deployment scenarios to meet the capacity requirements of each component. New services can be deployed to the service stratum (i.e. session-based services and non-session services) while the transport equipment remains unchanged. Another benefit of that separation is the migration independency. The transport elements can be upgraded or replaced with new technologies without changing service provisioning facilities. A common Transport stratum could be used by different retail sections of the same provider group. This modularity is a unique feature of the NGN architecture (Morita, 2007).

Figure 1.

The NGN architecture (ITU-T M.3060, 2006)

The NGN Service stratum provides functions that control and manage network services in order to enable end-users services and applications. The services can be voice, data or video applications. In more detail, these functions provide session-based services such as IP telephony, video chatting and videoconferencing and non session-based services such as video streaming and broadcasting. In addition, the Service stratum functions provide all the network functionality associated with existing Public Switched Telephone Network/Integrated Services Digital Network (PSTN/ISDN) services (Knightson, 2005). The Transport stratum provides functions that transfer data between peer entities and functions that control and manage transport resources in order to carry these data among terminating entities. The data could be user, control and/or management information data. In addition, the Transport stratum is responsible to provide end-to-end QoS, which is a desirable feature of the NGN. IP is recognized as the most promising transport technology for NGNs. Thus, the IP provides IP connectivity for end-user equipment outside a NGN, as well as controllers and enablers that reside on servers inside a NGN.

Key Terms in this Chapter

IP: Internet Protocol.

IETF: Internet Engineering Task Force.

WSDL: Web Services Description Language.

XML: Extensible Markup Language.

TDM: Time Division Multiplexing.

RDF: Resource Description Framework.

HTTP: Hypertext Transfer Protocol.

SOA: Service Oriented Architecture.

ITU: International Telecommunication Union.

SOAP: Simple Object Access Protocol.

BSS: Business Support System.

W3C: World Wide Web Consortium.

GUI: Graphical User Interface.

LAN: Local Area Network.

RSS: Really Simple Syndication.

PSTN: Public Switched Telephone Network.

SVG: Scalable Vector Graphics.

LLA: Logical Layer Architecture.

GIOP: General Inter-Orb Protocol.

NGN: Next Generation Networks.

TMN: Telecommunication Management Network.

IIOP: Internet Inter-Orb Protocol.

OSS: Operations Support System.

OSI: Open System Interconnection.

SS7: Signaling System No.7.

ISDN: Integrated Services Digital Network.

DCOM: Distributed Component Object Model.

SDH: Synchronous Digital Hierarchy.

RPC: Remote Procedure Call.

MIB: Management Information Base.

UDDI: Universal Description Discovery and Integration.

OS: Operations System.

QoS: Quality of Service.

eTOM: Enhanced Telecom Operations Map.

TMF: Telemanagement Forum.

CORBA: Common Object Request Broker Architecture.

Complete Chapter List

Search this Book:
Reset
Editorial Advisory Board
Table of Contents
Foreword
Robert A. Walker, Drew Parker
Preface
Stavros Kotsopoulos, Konstantinos Ioannou
Acknowledgment
Chapter 1
Dzmitry Kliazovich, Michael Devetsikiotis, Fabrizio Granelli
The layering principle has been long identified as a way to increase the interoperability and to improve the design of telecommunication protocols... Sample PDF
Formal Methods in Cross Layer Modeling and Optimization of Wireless Networks: State of the Art and Future Directions
$37.50
Chapter 2
Dimitris Toumpakaris, Jungwon Lee
This chapter presents an introduction to cross-layer scheduling and resource allocation for wireless systems and an overview of some of the... Sample PDF
Cross-Layer Resource Allocation and Scheduling for Wireless Systems
$37.50
Chapter 3
Prashant Pillai
IP multicast mechanisms provide efficient bandwidth consumption and distribution of high volume contents such as audio/video streaming... Sample PDF
An AAA Framework for IP Multicast Communication in Next Generation Networks
$37.50
Chapter 4
N. Merlemis, D. Zevgolis
This chapter is an introduction of the Wavelength-division multiplexing (WDM) technologies (such as Dense WDM and coarse WDM) and their recent... Sample PDF
Wavelength Division Multiplexing Technologies and their Applications
$37.50
Chapter 5
Sotiris Karabetsos, Spiros Mikroulis, Athanase Nassiopoulos
The high capacity offered by the optical fiber, combined with the mobility and the flexibility of wireless access, either fixed or not, provides an... Sample PDF
Radio over Fiber for Broadband Communications: A Promising Technology for Next Generation Networks
$37.50
Chapter 6
Konstantinos Birkos
High Altitude Stratospheric Platforms (HASPs) have gained much of attention from the scientific society and the communication industry in the recent... Sample PDF
High Altitude Stratospheric Platforms (HASPs)
$37.50
Chapter 7
Dimitrios K. Lymberopoulos
The Next Generation Network (NGN) is a very complex environment, where various parties (network operators, services and application providers... Sample PDF
Test Template for Data Mining Publications
$37.50
Chapter 8
Konstantinos S. Kotsopoulos
Next Generation Networks (NGNs) will accommodate heterogeneous architectures that need to be managed in order to provide services with high QoS to... Sample PDF
The Adoption of Service-Oriented Architecture (SOA) in Managing Next Generation Networks (NGNs)
$37.50
Chapter 9
Ioannis Papapanagiotou, Georgios S. Paschos
The present chapter contains a thorough investigation of Quality of Service, Energy Conservation and mobility in 802.11 and 802.16 standards.... Sample PDF
A Case Study on the QoS, Energy Consumption and Mobility of WLANs and WMANs
$37.50
Chapter 10
Panagiotis Kasimatis, Dimitra Varla
This chapter deals with the description of the various applied Mobile System Architectures, showing the evolution path towards the IP Convergence... Sample PDF
Mobile Telecom System Architectures—IMS an Evolution Path Towards IP Convergence
$37.50
Chapter 11
Peter Brida, Peter Cepel, Jan Duha
This chapter deals with mobile positioning in wireless heterogeneous next generation networks. Positioning process is analyzed and the chapter gives... Sample PDF
Mobile Positioning in Next Generation Networks
$37.50
Chapter 12
Anthony Ioannidis, Jiorgis Kritsotakis
Convergence in the communication industry is a reality – networks are being integrated, digital devices are being unified, and organizations seeking... Sample PDF
Converged Networks and Seamless Mobility: Lessons from Experience
$37.50
Chapter 13
Costas Chaikalis, Felip Riera-Palou
Modern and future wireless communication systems such as UMTS and beyond 3G systems (B3G) are expected to support very high data rates to/from... Sample PDF
Efficient Receiver Implementation for Mobile Applications
$37.50
Chapter 14
Apostolos Georgiadis, Carles Fernández Prades
Multi-antenna systems incorporating smart antenna techniques present numerous advantages compared to their single antenna counterparts including... Sample PDF
Novel Multi-Antenna and Smart Antenna Techniques for Next Generation Wireless Communication Networks
$37.50
Chapter 15
Stelios A. Mitilineos, Christos N. Capsalis, Stelios C.A. Thomopoulos
Small-scale fading strongly affects the performance of a radio link; therefore radio channel simulation tools and models are broadly being used in... Sample PDF
Simulation of Small-Scale Fading in Mobile Channel Models for Next-Generation Wireless Communications
$37.50
Chapter 16
Petros Karadimas
This chapter studies a composite stochastic model, in which the diffuse component arises from three dimensional (3-D) multipath scattering. That... Sample PDF
Stochastic Modeling of Narrowband Fading Channels with Three Dimensional Diffuse Scattering
$37.50
Chapter 17
Anastasios Papazafeiropoulos
As a consequence of the growing interest in wireless communications systems, much effort is being devoted to the channel characterization and... Sample PDF
Channel Characterization and Modelling for Mobile Communications
$37.50
Chapter 18
Fotis C. Kitsios, Spyros P. Angelopoulos, John Zannetopoulos
There is no doubt that e-government is a phenomenon of our era. E-business is becoming vital on the private sector as well as in the governmental... Sample PDF
Innovation and E-Government: An in Depth Overview on E-Services
$37.50
Chapter 19
Spyros P. Angelopoulos, Fotis C. Kitsios, Eduard Babulak
Telecommunications and Internet Technologies have evolved dramatically during the last decade, laying a solid foundation for the future generation... Sample PDF
From E to U: Towards an Innovative Digital Era
$37.50
Chapter 20
Fotis C. Kitsios
Nowadays that the world depends more and more in services, there is no issue more fundamental for service organizations than understanding the... Sample PDF
Service Innovation Management: New Service Development Strategies in the Telecommunication Industry Test Template for Data Mining Publications
$37.50
Chapter 21
D. M. Emiris
Auctioning over Wireless Networks, constitutes an attractive emerging class for m-commerce applications and formulates a procurement negotiation... Sample PDF
The Expansion of E-Marketplace to M-Marketplace by Integrating Mobility and Auctions in a Location-Sensitive Environment: Application in Procurement of Logistics Services
$37.50
Chapter 22
Achilles D. Kameas
This chapter describes a human centric approach for designing and deploying ubiquitous computing applications. These are considered as activity... Sample PDF
Deploying Ubiquitous Computing Applications on Heterogeneous Next Generation Networks
$37.50
Chapter 23
Eduard Babulak, Konstantinos G. Ioannou, Athanasios Ioannou
Transportation and Internet Technologies have evolved dramatically during the last decade, laying solid foundation for the future generation of the... Sample PDF
Channel Management Schemes to Support Services in Ubiquitous Communications Infrastructures for Future Transportation Technologies
$37.50
About the Contributors