Animated Computer Education Games for Students with ADHD

Animated Computer Education Games for Students with ADHD

Kim B. Dielmann, Julie Meaux
DOI: 10.4018/978-1-60960-503-2.ch506
OnDemand:
(Individual Chapters)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

Children and adolescents with Attention Deficit Hyperactivity Disorder (ADHD) have difficulty maintaining attention, controlling their activity level, and they typically demonstrate poor interpersonal relationships skills. Because of their challenges, educational performance tends to suffer. Paradoxically, when seated in front of a videogame or computer program they enjoy, the performance of individuals with ADHD becomes similar to non-ADHD peers. The purpose of this chapter is to present a conceptual framework for understanding the factors that affect the outcome of individuals with ADHD, and to demonstrate how instructional design models can be used to guide the design and implementation of animated computer education games as instructional tools for this population. Specifically, the FIDGE model and Gagné’s Nine Events of Instruction are evaluated for their contributions to understanding the unique technological needs of the ADHD learner.
Chapter Preview
Top

Introduction

Current estimates indicate Attention Deficit Hyperactivity Disorder (ADHD) affects 4% to 12% of U.S. children (Froehlich et al., 2007). Longitudinal studies suggest children who are diagnosed with ADHD continue to have difficulties with organization, time management, impulsive thoughts and actions, stress management, emotional regulation, interpersonal relationships, and academic skills such as reading, studying, and test taking as adolescents and as young adults (Barkley, Fischer, Smallish, and Fletcher, 2006). Children and adolescents with ADHD often struggle in traditional classrooms. Many fidget and have difficulty remaining in their seats, thus causing disruption to the classroom as well as to the child’s own education. Even when children with ADHD are able to sit quietly, they often require multiple repetition in order to retain information they hear. Most teachers cannot pause to emphasize each individual fact to a child with ADHD while the rest of the class has grasped the material and moved on. As a result, adolescents with ADHD are more likely to drop out of high school and fail to complete college compared to their non-ADHD counterparts. Lower educational achievement often leads to underemployment, poor social adjustment, and decreased overall quality of life. To address these problems, a more engaging and personalized education format is necessary for children and adolescents with ADHD.

According to DuPaul and Stoner (2003), students with ADHD are educated more effectively if multiple mediators (peers, computers, and parents) are involved. They also recommend the intervention strategies be individualized particularly since the ADHD population is heterogenious. According to the Centers for Disease Control and Prevention (September 2, 2005), 56% of all children ages four to 17 years diagnosed with ADHD were taking stimulant medications. Though medication is the most widely used treatment for ADHD, a combination of self-monitoring and self-reinforcement may have longer lasting effects. Barkley, Copeland, and Sivage (1980) found this combination improved task-related attention, academic accuracy, and peer interactions. DuPaul, Rutherford and Hosterman (2008) suggested the use of self-monitoring and self-reinforcement particularly at the secondary level because there are fewer opportunities for this age group for token reinforcement, contingency contracting, or response cost.

Complete Chapter List

Search this Book:
Reset