CAD Data Exhange and CAD Standards

CAD Data Exhange and CAD Standards

Xun Xu (University of Auckland, NZ)
DOI: 10.4018/978-1-59904-714-0.ch002
OnDemand PDF Download:
$37.50

Abstract

Today, more companies than ever before are involved in manufacturing various parts of their end products using different subcontractors, many of whom are often geographically diverse. The rise of such global efforts has created the need for sharing information among vendors involved in multi-disciplinary projects. Transfer of data is necessary so that, for example, one organization can be developing a CAD model, while another performs analysis work on the same model; at the same time a third organization is responsible for manufacturing the product. Data transfer fills the need to satisfy each of these functions in a specific way. Accurate transmission is of paramount importance. Thus, a mechanism for good data transfer is needed. The CAD interoperability issue - using one CAD system in-house, yet needing to deliver designs to, or receive designs from, another system, poses a challenge to industries such as automotive, aerospace, shipbuilding, heavy equipment, and high-tech original equipment manufacturers and their suppliers. It is worth studying the issue and determining how engineering model data is delivered today to manufacturers and suppliers, how CAD conversion, geometric translation, and/or feature-based CAD interoperability are handled, at what expense, and under whose authority. This chapter explores the various ways to make this vital transfer possible. The attention will be directed towards data exchange and standards for 3-D CAD systems. Since CAD data formats have a lot to do with CAD kernels that govern the data structure and therefore the data formats, some popular CAD kernels are discussed. The data interoperability section covers different types of data translations and conversions. The use of neutral or standardized data exchange protocols is one of the natural methods for data exchange and sharing. This topic is covered at the end of this chapter.
Chapter Preview
Top

Cad Kernels

CAD data formats are governed by the (solid) modelling kernels that the CAD systems were built upon. This is true with both history-based and history-free CAD systems as discussed in Chapter I. A modelling kernel is a collection of classes and components comprised of mathematical functions that perform specific modelling tasks. A modelling kernel may support solid modelling, generalized cellular modelling and freeform surface/sheet modelling. It may contain functions such as model creation and editing (e.g. Boolean modelling operators), feature modelling support, advanced surfacing, thickening and hollowing, blending and filleting and sheet modelling. Most of the kernels also provide graphical and rendering support, including hidden-line, wire-frame and drafting, as well as tessellation functionality and a suite of model data inquiries. The CAD graphic user interface (GUI) interfaces with the kernel’s functions through so-called application user interface. Take Parasolid® modelling kernel as an example, which provides 3D digital representation capabilities for NX™, Solid Edge, Femap and Teamcenter solutions. The 3D-based application interacts with Parasolid® through one of its three interfaces as shown in Figure 1: Parasolid® Kernel (PK) interface, Kernel Interface (KI) and Downward Interface (DI).

Figure 1.

Kernel working diagram

Complete Chapter List

Search this Book:
Reset
Dedication
Table of Contents
Foreword
A.Y.C. Nee
Acknowledgment
Xun Xu
Chapter 1
Xun Xu
One of the key activities in any product design process is to develop a geometric model of the product from the conceptual ideas, which can then be... Sample PDF
Geometric Modelling and Computer-Aided Design
$37.50
Chapter 2
Xun Xu
Today, more companies than ever before are involved in manufacturing various parts of their end products using different subcontractors, many of... Sample PDF
CAD Data Exhange and CAD Standards
$37.50
Chapter 3
Xun Xu
Products and their components are designed to perform certain functions. Design specifi- cations ensure the functionality aspects. The task in... Sample PDF
Computer-Aided Process Planning and Manufacturing
$37.50
Chapter 4
Feature Technology  (pages 75-89)
Xun Xu
Throughout the course of the development of CAD, CAPP, and CAM systems, unambiguous representation of a design’s geometry and topology remain an... Sample PDF
Feature Technology
$37.50
Chapter 5
Feature Recognition  (pages 90-108)
Xun Xu
Conventional CAD models only provide pure geometry and topology for mechanical designs such as vertices, edges, faces, simple primitives, and the... Sample PDF
Feature Recognition
$37.50
Chapter 6
Feature Interactions  (pages 109-125)
Xun Xu
Feature interaction tends to have a wide range of consequences and effects on a feature model and its applications. While these may often be... Sample PDF
Feature Interactions
$37.50
Chapter 7
Xun Xu
Integrated feature technology promotes a closer connection between design and manufacturing through features. When machining features are... Sample PDF
Integrated Feature Technolog
$37.50
Chapter 8
CNC Machine Tools  (pages 165-187)
Xun Xu
The introduction of CNC machines has radically changed the manufacturing industry. Curves are as easy to cut as straight lines, complex 3-D... Sample PDF
CNC Machine Tools
$37.50
Chapter 9
Program CNCs  (pages 188-229)
Xun Xu
A CNC machine can be programmed in different ways to machine a workpiece. In addition to creating the cutting program, many other factors also need... Sample PDF
Program CNCs
$37.50
Chapter 10
Xun Xu
Technologies concerning computer-aided design, process planning, manufacturing and numerical control, have matured to a point that commercialized... Sample PDF
Integration of CAD/CAPP/CAM/CNC
$37.50
Chapter 11
Xun Xu
The integration model (Model B) as discussed in the previous chapter makes use of exchangeable neutral data formats such as IGES (1980). Neutral... Sample PDF
Integration Based on STEP Standards
$37.50
Chapter 12
Xun Xu
Function blocks are an IEC (International Electro-technical Commission) standard for distributed industrial processes and control systems (IEC... Sample PDF
Function Block-Enabled Integration
$37.50
Chapter 13
Xun Xu
In order to prepare manufacturing companies to face increasingly frequent and unpredictable market changes with confidence, there is a recognized... Sample PDF
Development of an Integrated, Adaptable CNC System
$37.50
Chapter 14
Xun Xu
A logical step after CNC machining is inspection. With inspections, Closed-Loop Machining (CLM) can be realized to maximize the efficiency of a... Sample PDF
Integrating CAD/CAPP/CAM/CNC with Inspections
$37.50
Chapter 15
Xun Xu
Today, companies often have operations distributed around the world, and production facilities and designers are often in different locations.... Sample PDF
Internet-Based Integration
$37.50
Chapter 16
Xun Xu
Companies that have been practicing CAD, CAPP, CAM, and CNC integration have now realized that there is a need to operate in a much broader scope... Sample PDF
From CAD/CAPP/CAM/CNC to PDM, PLM and Beyond
$37.50
Chapter 17
Key Enabling Technologies  (pages 354-393)
Xun Xu
While computers have proven to be instrumental in the advancement of product design and manufacturing processes, the role that various technologies... Sample PDF
Key Enabling Technologies
$37.50
About the Author