Dark Optical Fiber Models for Broadband Networked Cities

Dark Optical Fiber Models for Broadband Networked Cities

Ioannis Chochliouros (OTE S.A., General Directorate for Technology, Greece), Anastasia S. Spiliopoulou (OTE S.A., General Directorate for Regulatory Affairs, Greece), George K. Lalopoulos (Hellenic Telecommunications Organization S.A., Greece) and Stergios P. Chochliouros (Independent Consultant, Greece)
DOI: 10.4018/978-1-60566-014-1.ch045
OnDemand PDF Download:
$37.50

Abstract

The world economy is currently moving in transition from the industrial age to a new set of rules, that of the so-called “Information Society,” which is rapidly taking shape in different multiple aspects of the everyday life. In fact, the exponential growth of the Internet, the penetration of mobile communications, the rapid emergence of electronic commerce, the restructuring of various forms of businesses in all sectors of the economic activity, the contribution of digital industries to growth and employment, and so forth, are among the current features of the new global reality, and they are all considered significant dynamic factors for further evolution and development (Commission of the European Communities, 2005). Changes are usually underpinned by technological progress and globalization, while the combination of worldwide competition and digital technologies is having a crucial sweeping effect. Digital technologies facilitate transmission and storing of information, while they offer multiple access facilities, in most cases without implying subsequent extra costs. As digital information may be easily transformed into economic and social value, this can offer huge opportunities for the development of new products-offerings, services, or applications. Thus, information becomes the “keyresource” and the prime “engine” of the new e-economy (Crandall, Jackson, & Singer, 2003). Companies in different sectors have already started to adapt to the new economic situation in order to become e-businesses (Commission of the European Communities, 2001c). In addition, the full competitiveness of the state in the current high-tech digitally converging environment is strongly related to the existence of modern digital infrastructures of high capacity and of high performance, rationally deployed and properly priced, capable of providing easy, cost-effective, secure, and uninterrupted access to the international “digital web” of knowledge and commerce without imposing any artificial barriers and/or restrictions (Wallsten, 2005). Broadband development is nowadays an essential strategic priority (Chochliouros & Spiliopoulou, 2005), not only for the European Union (EU) but for the global environment. More specifically, broadband can be considered an “absolutely necessary prerequisite” in order to materialize all potential benefits from information society facilities and so to improve living standards (Commission of the European Communities, 2001b). The availability, access, and ultimate use of broadband in both business and residential settings are critical issues. Both businesses and consumers can derive increased benefits from the availability of broadband connection to the Internet, as the technology speeds up some applications and creates entirely new possibilities (Hu & Prieger, 2007).
Chapter Preview
Top

Introduction: The Broadband Perspective

The world economy is currently moving in transition from the industrial age to a new set of rules, that of the so-called “Information Society,” which is rapidly taking shape in different multiple aspects of the everyday life. In fact, the exponential growth of the Internet, the penetration of mobile communications, the rapid emergence of electronic commerce, the restructuring of various forms of businesses in all sectors of the economic activity, the contribution of digital industries to growth and employment, and so forth, are among the current features of the new global reality, and they are all considered significant dynamic factors for further evolution and development (Commission of the European Communities, 2005).

Changes are usually underpinned by technological progress and globalization, while the combination of worldwide competition and digital technologies is having a crucial sweeping effect. Digital technologies facilitate transmission and storing of information, while they offer multiple access facilities, in most cases without implying subsequent extra costs. As digital information may be easily transformed into economic and social value, this can offer huge opportunities for the development of new products-offerings, services, or applications. Thus, information becomes the “key-resource” and the prime “engine” of the new e-economy (Crandall, Jackson, & Singer, 2003).

Companies in different sectors have already started to adapt to the new economic situation in order to become e-businesses (Commission of the European Communities, 2001c). In addition, the full competitiveness of the state in the current high-tech digitally converging environment is strongly related to the existence of modern digital infrastructures of high capacity and of high performance, rationally deployed and properly priced, capable of providing easy, cost-effective, secure, and uninterrupted access to the international “digital web” of knowledge and commerce without imposing any artificial barriers and/or restrictions (Wallsten, 2005).

Broadband development is nowadays an essential strategic priority (Chochliouros & Spiliopoulou, 2005), not only for the European Union (EU) but for the global environment. More specifically, broadband can be considered an “absolutely necessary prerequisite” in order to materialize all potential benefits from information society facilities and so to improve living standards (Commission of the European Communities, 2001b). The availability, access, and ultimate use of broadband in both business and residential settings are critical issues. Both businesses and consumers can derive increased benefits from the availability of broadband connection to the Internet, as the technology speeds up some applications and creates entirely new possibilities (Hu & Prieger, 2007).

To appropriate further productivity gains, it should be necessary to exploit advances offered by the relevant sophisticated technologies, including high-speed connections and multiple Internet uses (Commission of the European Communities, 2002). However, to obtain such benefits, it should be necessary to develop modern, cooperative, and complementary network facilities and suitable underlying infrastructures. Among the various alternatives, optical access networks (OANs) can be considered, for a variety of explicit reasons, as a very reliable and effective solution, particularly in urban areas (Green, 2006).

The development of innovative communications technologies, the digital convergence of media and content, the exploitation and the penetration of Internet, and the emergence of the digital economy are main drivers of the networked society, while significant economic activities are organized in networks (including development and upgrading), especially within urban cities (Commission of the European Communities, 2003, 2006). In fact, cities remain the first “interface” for citizens and enterprises with the administration and the main providers of public services.

Key Terms in this Chapter

FTTx: Fiber to the (x = Cab Cabinet, x = C Curb, x = B Building, x = H Home).

Condominium Fiber: A unit of dark fiber installed by a particular contractor (originating either from the private or the public sector) on behalf of a consortium of customers, with the customers to be owners of the individual fiber strands. Each customer/owner lights their fibers using her own technology, thereby deploying a private network to wherever the fiber reaches, that is, to any possible terminating location or endpoint.

Carrier “Neutral” Collocation Facilities: Facilities, especially in cities, built by companies to allow the interconnection of networks between competing service providers and for the hosting of Web server, storage devices, and so forth. They are rapidly becoming the “obvious” location for terminating “customer-owned” dark fiber. [These facilities, also called “carrier neutral hotels,” feature diesel power backup systems and the most stringent security systems. Such facilities are open to carriers, Web hosting firms and application service firms, Internet service providers, and so on. Most of them feature a “meet-me” room where fiber cables can be cross-connected to any service provider within the building. With a simple change in the optical patch panel in the collocation facility, the customer can quickly and easily change service providers on very short notice.]

Local Area Network (LAN): A data communications system that (a) lies within a limited spatial area, (b) has a specific user group, (c) has a specific topology, and (d) is not a public switched telecommunications network, but may be connected to one.

Metropolitan Area Network (MAN): A data network intended to serve an area approximating that of a large city. Such networks are being implemented by innovative techniques, such as running fiber cables through subway tunnels. A popular example of a MAN is SMDS (see IETF RFC 1983).

Broadband: A service or connection allowing a considerable amount of information to be conveyed, such as video. Generally defined as a bandwidth > 2Mbit/s.

Dark Fiber: Optical fiber for infrastructure (cabling and repeaters) that is currently in place but is not being used. Optical fiber conveying information in the form of light pulses so the “dark” means no light pulses are being sent.

Optical Access Network (OAN): The set of access links sharing the same network side interfaces and supported by optical access transmission systems.

Municipal Fiber Network: A network of specific nature and architecture, owned by a municipality (or a community); its basic feature is that it has been installed as a kind of public infrastructure with the intention of leasing it to any potential users (under certain well defined conditions and terms). Again, “lighting” the fiber to deploy private network connections is the responsibility of the lessee, not the municipality.

Dense-Wavelength Division Multiplexing (DWDM): The operation of a passive optical component (multiplexer) which separates (and/or combines) two or more signals at different wavelength from one (two) or more inputs into two (one) or more outputs.

Complete Chapter List

Search this Book:
Reset