Developments and Advances in Biomedical Functional Infrared Imaging

Developments and Advances in Biomedical Functional Infrared Imaging

Arcangelo Merla (Institute of Advanced Biomedical Technologies and Foundation G. d’Annunzio University and G. d’Annunzio University, Italy)
DOI: 10.4018/978-1-60566-314-2.ch017
OnDemand PDF Download:


This chapter presents an overview on recent developments in the field of clinical applications of the functional infrared imaging. The functional infrared imaging is a relatively recent imaging methodology introduced for the study of the functional properties and alterations of the human thermoregulatory system for biomedical purposes. The methodology is based on the modeling of the bio-heat exchange processes and the recording of thermal infrared data by means of advanced technology. Some innovative applications of functional infrared imaging to diagnostics, psychometrics, stress measurements and psycho-neurophysiology will be presented, with special emphasis to the potentialities and the capabilities that such technique may bring to biomedical investigations.
Chapter Preview


Objects are characterized by a variety of physical parameters such as shape, weight, and size. However, one of the most frequently measured physical properties is temperature. Temperatures may be measured with either a contact or non-contact device. The thermal infrared imaging systems create electronic picture of the scene. Such non-contact systems allow the representation of the surface thermal distribution of an object by detecting the thermal infrared emission spontaneously emitted by the object itself. Early use of thermal infrared imaging in medicine dates back to early ‘60s. Several studies have been performed so far to assess the contribution that such information may provide to the clinicians. The physiological basis for using thermal infrared imaging in medicine is the fact that the skin temperature distribution of the human body depends on the complex relationships defining the heat exchange processes between skin tissue, inner tissue, local vasculature, and metabolic activity. All of these processes are mediated and regulated by the sympathetic and parasympathetic activity to maintain the thermal homeostasis. The presence of a disease may affect both at a local or systemic level, the heat balance or exchange processes, resulting in an increase or a decrease of the skin temperature. Therefore, the detection of skin temperature abnormalities may provide diagnostic criteria for a variety of diseases interfering with the regular control of the skin temperature.

Unfortunately, such a simplistic approach, combined with early and not enough mature technology, did not provide adequate and effective results for supporting routinely use of thermal infrared imaging in diagnostics. Therefore, thermal infrared imaging has been substantially discarded as a diagnostic tool until the middle ‘90s.

At the beginning of ‘90s, the evolution of technological advances in infrared sensor technology, image processing, computer architecture, knowledge-based databases, and their overall system integration has resulted in new methods of research and use in medical infrared imaging. The development of infrared cameras with focal plane arrays added a new dimension to this imaging modality (Roganski, 2002). New detector materials with improved thermal sensitivity are now available and the production of high-density focal plane arrays (up to 640 x 480) has been achieved. Read-out circuitry using on-chip signal pre-processing is now in common use. These breakthroughs led to the availability of commercial and user-friendly camera systems with thermal sensitivity less than 30 mK (20 mK for nitrogen cooled cameras), as well as spatial resolution of 25-40 microns, given the appropriate optics. Furthermore, time resolution has been greatly improved, being now possible to acquire up to 100 full frame images per second (Bronzino, 2007).

The last-generation camera systems allow effective monitoring and studying the dynamics of the local control of the skin temperature and in which manner diseases or external stimuli may influence it (Diakides, 2002). This means that the characteristic parameters modeling the activity of the skin thermoregulatory system can be retrieved and used as quantitative and effective diagnostic parameters (Merla, 2002). Therefore, modeling the activity of the skin thermoregulatory system can provide specific parameters from which to infer diagnostic criteria (Merla, 2007).

As a consequence, there is an emerging interest in the development of smart image processing algorithms and bio-heat transfer models to enhance the interpretation of thermal signatures. In the clinical area, new researches are underway to achieve quantitative clinical data interpretation in standardized diagnostic procedures and protocols (Diakides, 2002).

In the past 10 years, significant progress has been made internationally by advancing a thrust for new initiatives worldwide for clinical quantification, international collaboration, and providing a forum for coordination, discussion, and publication. As a result of this process, three IEEE Engineering in Medicine and Biology Magazines, Special Issues dedicated to biomedical thermal imaging have been published (Diakides, 1998, 2000, 2002) in addition to a growing number of papers published on top international medical journals.

Key Terms in this Chapter

Thermal Emission: Photonic emission of energy by bodies due to their temperature. The thermal emission is described by Stefan-Boltzmann, Planck and Wien laws.

Thermoregulation: The complex of the processes involved into maintaining the human body temperature at stationary ranges.

Perfusion: Amount of blood for volume unity of tissue.

Sympathetic Activity: The activity of nervous system that takes over where an immediate and effective response is required. The sympathetic nervous system works alongside the parasympathetic nervous system and is known as the involuntary system because the actions caused by it are not consciously executed.

Infrared Imaging: Graphical representation of the superficial temperature distribution of bodies obtained through its thermal emission.

Bioheat: Heat amounts generated within in vivo tissues and vasculature.

Autonomic Nervous System: The autonomic nervous system (ANS) (or visceral nervous system) is the part of the peripheral nervous system that acts as a control system, maintaining homeostasis in the body. These maintenance activities are primarily performed without conscious control or sensation. The ANS has far reaching effects, including: heart rate, digestion, respiration rate, salivation, perspiration, diameter of the pupils, micturition (the discharge of urine), and sexual arousal.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Themis P. Exarchos, Athanasios Papadopoulos, Dimitrios I. Fotiadis
Chapter 1
Ioannis Dimou, Michalis Zervakis, David Lowe, Manolis Tsiknakis
The automation of diagnostic tools and the increasing availability of extensive medical datasets in the last decade have triggered the development... Sample PDF
Computational Methods and Tools for Decision Support in Biomedicine: An Overview of Algorithmic Challenges
Chapter 2
William Hsu, Alex A.T. Bui, Ricky K. Taira, Hooshang Kangarloo
Though an unparalleled amount and diversity of imaging and clinical data are now collected as part of routine care, this information is not... Sample PDF
Integrating Imaging and Clinical Data for Decision Support
Chapter 3
Spyretta Golemati, John Stoitsis, Konstantina S. Nikita
The estimation of motion of the myocardial and arterial wall is important for the quantification of tissue elasticity and contractility and has... Sample PDF
Analysis and Quantification of Motion within the Cardiovascular System: Implications for the Mechanical Strain of Cardiovascular Structures
Chapter 4
Christos V. Bourantas, Katerina Naka, Dimitrios Fotiadis, Lampros Michalis
Intracoronary Ultrasound (ICUS) imaging is an intravascular catheter-based technique which provides real-time, high resolution, cross-sectional... Sample PDF
New Developments in Intracoronary Ultrasound Processing
Chapter 5
Stavroula Mougiakakou, Ioannis Valavanis, Alexandra Nikita, Konstantina S. Nikita
Recent advances in computer science provide the intelligent computation tools needed to design and develop Diagnostic Support Systems (DSSs) that... Sample PDF
Diagnostic Support Systems and Computational Intelligence: Differential Diagnosis of Hepatic Lesions from Computed Tomography Images
Chapter 6
Marotesa Voultsidou, J. Michael Herrmann
Indicative features of an fMRI data set can be evaluated by methods provided by theory of random matrices (RMT). RMT considers ensembles of matrices... Sample PDF
Significance Estimation in fMRI from Random Matrices
Chapter 7
Dimitrios C. Karampinos, Robert Dawe, Konstantinos Arfanakis, John G. Georgiadis
Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue microstructure by probing the diffusion of water... Sample PDF
Optimal Diffusion Encoding Strategies for Fiber Mapping in Diffusion MRI
Chapter 8
Dimitrios G. Tsalikakis, Petros S. Karvelis, Dimitrios I. Fotiadis
Segmentation plays a crucial role in cardiac magnetic resonance imaging (CMRI) applications, since it permits automated detection of regions of... Sample PDF
Segmentation of Cardiac Magnetic Resonance Images
Chapter 9
Katia Marina Passera, Luca Tommaso Mainardi
Image registration is the process of determining the correspondence of features between images collected at different times or using different... Sample PDF
Image Registration Algorithms for Applications in Oncology
Chapter 10
Lena Costaridou, Spyros Skiadopoulos, Anna Karahaliou, Nikolaos Arikidis, George Panayiotakis
Breast cancer is the most common cancer in women worldwide. Mammography is currently the most effective modality in detecting breast cancer... Sample PDF
Computer-Aided Diagnosis in Breast Imaging: Trends and Challenges
Chapter 11
E. Kyriacou, C.I. Christodoulou, C. Loizou, M.S. Pattichis, C.S. Pattichis, S. Kakkos
Stroke is the third leading cause of death in the Western world and a major cause of disability in adults. The objective of this work was to... Sample PDF
Assessment of Stroke by Analysing Cartoid Plaque Morphology
Chapter 12
Marios Neofytou, Constantinos Pattichis, Vasilios Tanos, Marios Pattichis, Eftyvoulos Kyriacou
The objective of this chapter is to propose a quantitative hysteroscopy imaging analysis system in gynaecological cancer and to provide the current... Sample PDF
Quantitative Analysis of Hysteroscopy Imaging in Gynecological Cancer
Chapter 13
Thomas V. Kilindris, Kiki Theodorou
Patient anatomy, biochemical response, as well functional evaluation at organ level, are key fields that produce a significant amount of multi modal... Sample PDF
Combining Geometry and Image in Biomedical Systems: The RT TPS Case
Chapter 14
Ioannis Tsougos, George Loudos, Panagiotis Georgoulias, Konstantina S. Nikita, Kiki Theodorou
Quantitative three-dimensional nuclear medical imaging plays a continuously increasing role in radionuclide dosimetry, allowing the development of... Sample PDF
Internal Radionuclide Dosimetry using Quantitative 3-D Nuclear Medical Imaging
Chapter 15
Evanthia E. Tripoliti, Dimitrios I. Fotiadis, Konstantia Veliou
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) modality which can significantly improve our understanding of the brain... Sample PDF
Diffusion Tensor Imaging and Fiber Tractography
Chapter 16
Anastasios Koutlas, Dimitrios I. Fotiadis
The aim of this chapter is to analyze the recent advances in image processing and machine learning techniques with respect to facial expression... Sample PDF
Image Processing and Machine Learning Techniques for Facial Expression Recognition
Chapter 17
Arcangelo Merla
This chapter presents an overview on recent developments in the field of clinical applications of the functional infrared imaging. The functional... Sample PDF
Developments and Advances in Biomedical Functional Infrared Imaging
Chapter 18
Aristotelis Chatziioannou, Panagiotis Moulos
The completion of the Human Genome Project and the emergence of high-throughput technologies at the dawn of the new millennium, are rapidly changing... Sample PDF
DNA Microarrays: Analysis and Interpretation
Chapter 19
Nikolaos Giannakeas, Dimitrios I. Fotiadis
Microarray technology allows the comprehensive measurement of the expression level of many genes simultaneously on a common substrate. Typical... Sample PDF
Image Processing and Machine Learning Techniques for the Segmentation of cDNA
Chapter 20
Petros S. Karvelis, Dimitrios I. Fotiadis
Automated chromosome analysis is now becoming routine in most human cytogenetics laboratories. It involves both processing and analysis of digital... Sample PDF
Recent Advances in Automated Chromosome Image Analysis
Chapter 21
O. Lezoray, G. Lebrun, C. Meurie, C. Charrier, A. Elmotataz, M. Lecluse
The segmentation of microscopic images is a challenging application that can have numerous applications ranging from prognosis to diagnosis.... Sample PDF
Machine Learning in Morphological Segmentation
Chapter 22
Michael Haefner, Alfred Gangl, Michael Liedlgruber, A. Uhl, Andreas Vecsei, Friedrich Wrba
Wavelet-, Fourier-, and spatial domain-based texture classification methods have been used successfully for classifying zoom-endoscopic colon images... Sample PDF
Pit Pattern Classification Using Multichannel Features and Multiclassification
Chapter 23
C. Papaodysseus, P. Rousopoulos, D. Arabadjis, M. Panagopoulos, P. Loumou
In this chapter the state of the art is presented in the domain of automatic identification and classification of bodies on the basis of their... Sample PDF
Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images
Chapter 24
Alexia Giannoula, Richard S.C. Cobbold
“Elastography” or “elasticity imaging” can be defined as the science and methodology of estimating the mechanical properties of a medium (including... Sample PDF
Nonlinear Ultrasound Radiation-Force Elastography
Chapter 25
Valentina Russo, Roberto Setola
The aim of this chapter is to provide an overview about models and methodologies used for the Dynamic Contrast Enhancement (DCE) analysis. DCE is a... Sample PDF
Dynamic Contrast Enhancement: Analysis's Models and Methodologies
Chapter 26
George K. Matsopoulos
The accurate estimation of point correspondences is often required in a wide variety of medical image processing applications including image... Sample PDF
Automatic Correspondence Methods towards Point-Based Medical Image Registration: An Evaluation Study
Chapter 27
Alberto Taboada-Crispi, Hichem Sahli, Denis Hernandez-Pacheco, Alexander Falcon-Ruiz
Various approaches have been taken to detect anomalies, with certain particularities in the medical image scenario, linked to other terms... Sample PDF
Anomaly Detection in Medical Image Analysis
Chapter 28
C. Delgorge-Rosenberger, C. Rosenberger
The authors present in this chapter an overview on evaluation of medical image compression. The different methodologies used in the literature are... Sample PDF
Evaluation of Medical Image Compression
Chapter 29
Charalampos Doukas, Ilias Maglogiannis
Medical images are often characterized by high complexity and consist of high resolution image files, introducing thus several issues regarding... Sample PDF
Advanced ROI Coding Techniques for Medical Imaging
Chapter 30
Farhang Sahba
Ultrasound imaging now has widespread clinical use. It involves exposing a part of the body to highfrequency sound waves in order to generate images... Sample PDF
Segmentation Methods in Ultrasound Images
About the Editors
About the Contributors