DFM as a Conceptual Model for Data Warehouse

DFM as a Conceptual Model for Data Warehouse

Matteo Golfarelli (University of Bologna, Italy)
Copyright: © 2009 |Pages: 8
DOI: 10.4018/978-1-60566-010-3.ch100
OnDemand PDF Download:
$37.50

Abstract

Conceptual modeling is widely recognized to be the necessary foundation for building a database that is well-documented and fully satisfies the user requirements. In particular, from the designer point of view the availability of a conceptual model provides a higher level of abstraction in describing the warehousing process and its architecture in all its aspects. Typically conceptual models rely on a graphical notation that facilitates writing, understanding, and managing conceptual schemata by both designers and users. The Entity/Relationship (E/R) model (Chen, 1976) is widespread in the enterprises as a conceptual formalism to provide standard documentation for relational information systems; nevertheless, as E/R is oriented to support queries that navigate associations between data rather than synthesize them, it is not well-suited for data warehousing (Kimball, 1998). Actually, the E/R model has enough expressivity to represent most concepts necessary for modeling a Data Warehouse (DW); on the other hand, in its basic form, it is not able to properly emphasize the key aspects of the multidimensional model, so that its usage for DWs is expensive from the point of view of the graphical notation and not intuitive (Rizzi, 2006). Some designers claim that star schemata are expressive enough for conceptual modeling. Actually, a star schema is just a (denormalized) relational schema, so it merely defines a set of relations and integrity constraints. Using star schema for conceptual modeling is like starting to build a complex software by writing the code, without the support of any static, functional, or dynamic model, which typically leads to very poor results from the points of view of adherence to user requirements, maintenance, and reuse. For all these reasons, in the last few years the research literature has proposed several original approaches for modeling a DW, some based on extensions of known conceptual formalisms (e.g. E/R, Unified Modeling Language (UML)), some based on ad hoc ones. Remarkably, a comparison of the different models made by Abello (2006) pointed out that, abstracting from their graphical form, the core expressivity is similar, thus proving that the academic community reached an informal agreement on the required expressivity. This paper discusses the expressivity of an ad hoc conceptual model, the Dimensional Fact Model (DFM), in order to let the user verify the usefulness of a conceptual modeling step in DW design. After a brief listing of the main conceptual model proposals, the basic and advanced features in DW conceptual modeling are introduced and described by examples. Finally, the current trends in DW conceptual modeling are reported and the conclusions are drawn.
Chapter Preview
Top

Introduction

Conceptual modeling is widely recognized to be the necessary foundation for building a database that is well-documented and fully satisfies the user requirements. In particular, from the designer point of view the availability of a conceptual model provides a higher level of abstraction in describing the warehousing process and its architecture in all its aspects.

Typically conceptual models rely on a graphical notation that facilitates writing, understanding, and managing conceptual schemata by both designers and users. The Entity/Relationship (E/R) model (Chen, 1976) is widespread in the enterprises as a conceptual formalism to provide standard documentation for relational information systems; nevertheless, as E/R is oriented to support queries that navigate associations between data rather than synthesize them, it is not well-suited for data warehousing (Kimball, 1998). Actually, the E/R model has enough expressivity to represent most concepts necessary for modeling a Data Warehouse (DW); on the other hand, in its basic form, it is not able to properly emphasize the key aspects of the multidimensional model, so that its usage for DWs is expensive from the point of view of the graphical notation and not intuitive (Rizzi, 2006).

Some designers claim that star schemata are expressive enough for conceptual modeling. Actually, a star schema is just a (denormalized) relational schema, so it merely defines a set of relations and integrity constraints. Using star schema for conceptual modeling is like starting to build a complex software by writing the code, without the support of any static, functional, or dynamic model, which typically leads to very poor results from the points of view of adherence to user requirements, maintenance, and reuse. For all these reasons, in the last few years the research literature has proposed several original approaches for modeling a DW, some based on extensions of known conceptual formalisms (e.g. E/R, Unified Modeling Language (UML)), some based on ad hoc ones. Remarkably, a comparison of the different models made by Abello (2006) pointed out that, abstracting from their graphical form, the core expressivity is similar, thus proving that the academic community reached an informal agreement on the required expressivity.

This paper discusses the expressivity of an ad hoc conceptual model, the Dimensional Fact Model (DFM), in order to let the user verify the usefulness of a conceptual modeling step in DW design. After a brief listing of the main conceptual model proposals, the basic and advanced features in DW conceptual modeling are introduced and described by examples. Finally, the current trends in DW conceptual modeling are reported and the conclusions are drawn.

Complete Chapter List

Search this Book:
Reset