DNA Microarrays: Analysis and Interpretation

DNA Microarrays: Analysis and Interpretation

Aristotelis Chatziioannou (National Hellenic Research Foundation, Greece) and Panagiotis Moulos (National Hellenic Research Foundation, Greece)
DOI: 10.4018/978-1-60566-314-2.ch018
OnDemand PDF Download:


The completion of the Human Genome Project and the emergence of high-throughput technologies at the dawn of the new millennium, are rapidly changing the way we approach biological problems. DNA microarrays represent a promising new technological development, widely used for the investigation and identification of genes associated with important biological processes. The chapter is divided in two parts: the first discusses current methods for the acquisition and quantitation of the microarray image while the second focuses in the analysis and interpretation of the microarray signals (standardization, normalization, statistical analysis etc.)
Chapter Preview


A DNA microarray is normally a slide made of silica or synthetic materials where on top an ordered array of oligonucleotide clones is imprinted, corresponding to regions of all discovered or putative genes of an organism’s genome, at sufficient quantities to ensure evasion of saturation effects, which allows the specific binding of genes or gene products (Schena, 2003). DNA microarrays are composed of thousands of DNA sequences (probes), each representing a gene. The DNA sequences can be long (500-2500bp) cDNA sequences or shorter (25-70bp) oligonucleotide sequences. Oligonucleotide sequences can be pre-synthesized and deposited with a pin or piezoelectric spray, synthesized in situ by photolithographic (Affymetrix) or inkjet (Agilent) technologies, or be attached to microscopic beads (Illumina) which are then randomly dispersed over the wells of the microarray slide.

Relative quantitative detection of gene expression can be carried out between two samples on a single array or by single samples using multiple arrays. The first approach entails (at least) two sample sources which are labelled with different fluorescent molecules, usually Cy3 (green fluorescence) and Cy5 (red fluorescence) Conventionally Cy3 represents the ‘control’ state whereas Cy5 represents the state under examination. These samples are hybridized together on the same array, a scanner laser-excites the dyes and an image is produced for each dye. The relative intensities of each channel represent the relative abundance of the RNA or DNA product in each sample. In the second approach, each sample is labelled with the same dye and hybridized onto separate arrays (Bajcsy, Liu, & Band, 2007). The absolute fluorescent values of each spot may then be scaled and compared to detect possible alterations in gene expression.

The resulting images are used to generate a dataset where pre-processing is performed prior to the analysis and interpretation of the results, in order to ensure the same level of comparison within and across slides, as well as to mitigate the role of noise. The pre-processing step entails useful transformations and assessment of the signal quality of the gene probes, in order to extract or enhance reliable signal characteristics which render the dataset amenable to the application of various data analysis methods.

The quantification of gene expression implies that the amount of fluorescence measured at each sequence specific location is proportional to the amount of mRNA hybridized onto the gene probes on the array. Processing of the images maps the arrayed gene spots and quantifies their expression, to the relative fluorescence intensities, measured for each spot. Microarray experiments do not directly provide insight on the absolute level of expression of a particular gene; nevertheless, they are useful to compare the expression level among conditions and genes (e.g. health vs. disease, treated vs. untreated) (Quackenbush, 2002; Tarca et al. 2006).

Key Terms in this Chapter

Signal Information Exctraction: The process of calculating foreground and background intensities, based on the respective pixel distributions derived from the segmentation step.

Meta-Analysis: The exhaustive search process which comprises numerous and versatile algorithmic procedures to exploit the gene expression results by combining or further processing them with sophisticated statistical learning and data mining techniques coupled with annotated information concerning functional properties of these genes residing in large databases.

Normalization: The set of processes applied to compensate for systematic errors among genes or arrays in order to derive meaningful biological comparisons.

DNA Microarray: Normally a slide made of silica or synthetic materials where on top an ordered array of oligonucleotide clones is imprinted, corresponding to regions of all discovered or putative genes of an organism’s genome, which allows the specific binding of genes or gene products.

Missing Value Imputation: The estimation of missing probe values for a gene by the expression of other probes over the rest of the slides, based on certain statistical or geometrical criteria.

Segmentation: The process of classification of the area regarding a specific spot on the array to permit the distinction of the spot pixels either as foreground, or background.

Addressing or Gridding: The process of assigning coordinates to each of the spots for a spotted or bead array or the alignment of a rectangular lattice in order to map pixel elements to specific probes in Affymetrix arrays.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Themis P. Exarchos, Athanasios Papadopoulos, Dimitrios I. Fotiadis
Chapter 1
Ioannis Dimou, Michalis Zervakis, David Lowe, Manolis Tsiknakis
The automation of diagnostic tools and the increasing availability of extensive medical datasets in the last decade have triggered the development... Sample PDF
Computational Methods and Tools for Decision Support in Biomedicine: An Overview of Algorithmic Challenges
Chapter 2
William Hsu, Alex A.T. Bui, Ricky K. Taira, Hooshang Kangarloo
Though an unparalleled amount and diversity of imaging and clinical data are now collected as part of routine care, this information is not... Sample PDF
Integrating Imaging and Clinical Data for Decision Support
Chapter 3
Spyretta Golemati, John Stoitsis, Konstantina S. Nikita
The estimation of motion of the myocardial and arterial wall is important for the quantification of tissue elasticity and contractility and has... Sample PDF
Analysis and Quantification of Motion within the Cardiovascular System: Implications for the Mechanical Strain of Cardiovascular Structures
Chapter 4
Christos V. Bourantas, Katerina Naka, Dimitrios Fotiadis, Lampros Michalis
Intracoronary Ultrasound (ICUS) imaging is an intravascular catheter-based technique which provides real-time, high resolution, cross-sectional... Sample PDF
New Developments in Intracoronary Ultrasound Processing
Chapter 5
Stavroula Mougiakakou, Ioannis Valavanis, Alexandra Nikita, Konstantina S. Nikita
Recent advances in computer science provide the intelligent computation tools needed to design and develop Diagnostic Support Systems (DSSs) that... Sample PDF
Diagnostic Support Systems and Computational Intelligence: Differential Diagnosis of Hepatic Lesions from Computed Tomography Images
Chapter 6
Marotesa Voultsidou, J. Michael Herrmann
Indicative features of an fMRI data set can be evaluated by methods provided by theory of random matrices (RMT). RMT considers ensembles of matrices... Sample PDF
Significance Estimation in fMRI from Random Matrices
Chapter 7
Dimitrios C. Karampinos, Robert Dawe, Konstantinos Arfanakis, John G. Georgiadis
Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue microstructure by probing the diffusion of water... Sample PDF
Optimal Diffusion Encoding Strategies for Fiber Mapping in Diffusion MRI
Chapter 8
Dimitrios G. Tsalikakis, Petros S. Karvelis, Dimitrios I. Fotiadis
Segmentation plays a crucial role in cardiac magnetic resonance imaging (CMRI) applications, since it permits automated detection of regions of... Sample PDF
Segmentation of Cardiac Magnetic Resonance Images
Chapter 9
Katia Marina Passera, Luca Tommaso Mainardi
Image registration is the process of determining the correspondence of features between images collected at different times or using different... Sample PDF
Image Registration Algorithms for Applications in Oncology
Chapter 10
Lena Costaridou, Spyros Skiadopoulos, Anna Karahaliou, Nikolaos Arikidis, George Panayiotakis
Breast cancer is the most common cancer in women worldwide. Mammography is currently the most effective modality in detecting breast cancer... Sample PDF
Computer-Aided Diagnosis in Breast Imaging: Trends and Challenges
Chapter 11
E. Kyriacou, C.I. Christodoulou, C. Loizou, M.S. Pattichis, C.S. Pattichis, S. Kakkos
Stroke is the third leading cause of death in the Western world and a major cause of disability in adults. The objective of this work was to... Sample PDF
Assessment of Stroke by Analysing Cartoid Plaque Morphology
Chapter 12
Marios Neofytou, Constantinos Pattichis, Vasilios Tanos, Marios Pattichis, Eftyvoulos Kyriacou
The objective of this chapter is to propose a quantitative hysteroscopy imaging analysis system in gynaecological cancer and to provide the current... Sample PDF
Quantitative Analysis of Hysteroscopy Imaging in Gynecological Cancer
Chapter 13
Thomas V. Kilindris, Kiki Theodorou
Patient anatomy, biochemical response, as well functional evaluation at organ level, are key fields that produce a significant amount of multi modal... Sample PDF
Combining Geometry and Image in Biomedical Systems: The RT TPS Case
Chapter 14
Ioannis Tsougos, George Loudos, Panagiotis Georgoulias, Konstantina S. Nikita, Kiki Theodorou
Quantitative three-dimensional nuclear medical imaging plays a continuously increasing role in radionuclide dosimetry, allowing the development of... Sample PDF
Internal Radionuclide Dosimetry using Quantitative 3-D Nuclear Medical Imaging
Chapter 15
Evanthia E. Tripoliti, Dimitrios I. Fotiadis, Konstantia Veliou
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) modality which can significantly improve our understanding of the brain... Sample PDF
Diffusion Tensor Imaging and Fiber Tractography
Chapter 16
Anastasios Koutlas, Dimitrios I. Fotiadis
The aim of this chapter is to analyze the recent advances in image processing and machine learning techniques with respect to facial expression... Sample PDF
Image Processing and Machine Learning Techniques for Facial Expression Recognition
Chapter 17
Arcangelo Merla
This chapter presents an overview on recent developments in the field of clinical applications of the functional infrared imaging. The functional... Sample PDF
Developments and Advances in Biomedical Functional Infrared Imaging
Chapter 18
Aristotelis Chatziioannou, Panagiotis Moulos
The completion of the Human Genome Project and the emergence of high-throughput technologies at the dawn of the new millennium, are rapidly changing... Sample PDF
DNA Microarrays: Analysis and Interpretation
Chapter 19
Nikolaos Giannakeas, Dimitrios I. Fotiadis
Microarray technology allows the comprehensive measurement of the expression level of many genes simultaneously on a common substrate. Typical... Sample PDF
Image Processing and Machine Learning Techniques for the Segmentation of cDNA
Chapter 20
Petros S. Karvelis, Dimitrios I. Fotiadis
Automated chromosome analysis is now becoming routine in most human cytogenetics laboratories. It involves both processing and analysis of digital... Sample PDF
Recent Advances in Automated Chromosome Image Analysis
Chapter 21
O. Lezoray, G. Lebrun, C. Meurie, C. Charrier, A. Elmotataz, M. Lecluse
The segmentation of microscopic images is a challenging application that can have numerous applications ranging from prognosis to diagnosis.... Sample PDF
Machine Learning in Morphological Segmentation
Chapter 22
Michael Haefner, Alfred Gangl, Michael Liedlgruber, A. Uhl, Andreas Vecsei, Friedrich Wrba
Wavelet-, Fourier-, and spatial domain-based texture classification methods have been used successfully for classifying zoom-endoscopic colon images... Sample PDF
Pit Pattern Classification Using Multichannel Features and Multiclassification
Chapter 23
C. Papaodysseus, P. Rousopoulos, D. Arabadjis, M. Panagopoulos, P. Loumou
In this chapter the state of the art is presented in the domain of automatic identification and classification of bodies on the basis of their... Sample PDF
Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images
Chapter 24
Alexia Giannoula, Richard S.C. Cobbold
“Elastography” or “elasticity imaging” can be defined as the science and methodology of estimating the mechanical properties of a medium (including... Sample PDF
Nonlinear Ultrasound Radiation-Force Elastography
Chapter 25
Valentina Russo, Roberto Setola
The aim of this chapter is to provide an overview about models and methodologies used for the Dynamic Contrast Enhancement (DCE) analysis. DCE is a... Sample PDF
Dynamic Contrast Enhancement: Analysis's Models and Methodologies
Chapter 26
George K. Matsopoulos
The accurate estimation of point correspondences is often required in a wide variety of medical image processing applications including image... Sample PDF
Automatic Correspondence Methods towards Point-Based Medical Image Registration: An Evaluation Study
Chapter 27
Alberto Taboada-Crispi, Hichem Sahli, Denis Hernandez-Pacheco, Alexander Falcon-Ruiz
Various approaches have been taken to detect anomalies, with certain particularities in the medical image scenario, linked to other terms... Sample PDF
Anomaly Detection in Medical Image Analysis
Chapter 28
C. Delgorge-Rosenberger, C. Rosenberger
The authors present in this chapter an overview on evaluation of medical image compression. The different methodologies used in the literature are... Sample PDF
Evaluation of Medical Image Compression
Chapter 29
Charalampos Doukas, Ilias Maglogiannis
Medical images are often characterized by high complexity and consist of high resolution image files, introducing thus several issues regarding... Sample PDF
Advanced ROI Coding Techniques for Medical Imaging
Chapter 30
Farhang Sahba
Ultrasound imaging now has widespread clinical use. It involves exposing a part of the body to highfrequency sound waves in order to generate images... Sample PDF
Segmentation Methods in Ultrasound Images
About the Editors
About the Contributors