Dynamic Contrast Enhancement: Analysis's Models and Methodologies

Dynamic Contrast Enhancement: Analysis's Models and Methodologies

Valentina Russo (University La Sapienza, Italy) and Roberto Setola (University CAMPUS Bio-Medico, Italy)
DOI: 10.4018/978-1-60566-314-2.ch025
OnDemand PDF Download:


The aim of this chapter is to provide an overview about models and methodologies used for the Dynamic Contrast Enhancement (DCE) analysis. DCE is a non-invasive methodology aimed to diagnostic the nature of a lesion on the base of the perfusion’s dynamic of specific contrast agents. The idea at the base of DCE is that, in several pathological tissues, including tumors and inflammatory diseases, the angiogenic process is abnormal, hence the characterization of vascularisation structure may be used to support the diagnosis. In this chapter, we will describe the basic DCE procedures and introduce some of its most innovative evolution based on the pharmacokinetic analysis technique (PK), and the empirical model (EM). Even if DCE is still a medical research topic, there is large interest for this type of approach in biomedical applications as witnessed by the availability of specific tools in the last generation top-class US, CT and MR machines.
Chapter Preview


Quantitative characterization of microvascular structure using DCE is a powerful tool, able to provide valuable information for clinical purposes and/or for therapeutic trials. One goal of DCE is to characterize tissue regions, since some of their features (blood flow, vascular characteristics, or tissue integrity) are expected to vary in pathological tissue with respect to normal one.

In a typical DCE study, the dynamic information shows the rate at which tissue “enhances”, and subsequently the rate at which Contrast Agent (CA) washes out. The enhancement is thought to be the result of the CA arriving via the system blood flown and diffusing into the interstitial space around these vessels (which is known as the extravascular extracellular space - EES). The rate and the amplitude of enhancement depend on the density and permeability of the microvasculature and on the relative size of the EES. The degree of enhancement is, therefore, related to the distribution and concentration of the CA in the vessels and in the ESS; hence the shape of the enhancement curve, then, reflects blood flow, vascular volume, extravascular volume and vessel permeability (Srikanchana et al., 2004).

The CA is used generally as an intravascular marker while the leakage into the interstitial space is generally ignored. In practice the kinetics of CA distribution are more complex and additional data can be obtained from explicit modelling of the contrast (enhancement) leakage process. In the presence of leaky capillary endothelial membranes, intravascular CA will pass into the ESS, causing enhancement. The leakage rate depends on the surface area of leaky endothelium, on the permeability of the endothelium itself and on the concentration gradient of the CA across the vessel wall. It has become apparent that quantification of contrast leakage may be a powerful indicator of the state of neo-vascular angiogenesis in pathologies, such as tumors and inflammatory processes. As for cancer research, this is very appealing, since the inhibition of angiogenesis presents new therapeutic chances of targeting of newly formed vessels, with the final aim at inhibiting their onset and growth.

Key Terms in this Chapter

Pharmacokinetics (PK): It is referred to the evalutation of chemical compounds distribution in body over time.

Transfer Constant (Ktrans): Formally called volume transfer constant is the transfer constant related to “wash in” of the CA into the tissue

Contrast Agent (CA): Contrast Media perfuses into the tissue

Contrast Enhancement (CE): Tissue Contrast Concentration: the shape of an Enhancement Curve reflects blood flow, vascular volume, extravascular volume and vessel permeability

Area Under Curve (AUC): Represents the area under the CE Curve; it measures the quantity of CA absorbed by the tissue, hence it yields an estimation of blood flow that diffuses into the specific region

Arterial Input Factor (AIF): Is the Input Function and it measures the Plasma Contrast Concentration (of a Contrast Agent)

Extravascular Extracelllar Space (EES): Interstitial space (around vessels)

General Kinetic Model (GKM): Is the basic model often used to simplifies the human anatomy into two functional components (two compartments).

Transfer Constant (kep): Is the transfer constant related with the “wash-out” of the CA from the tissue; formally is the flux rate constant between the ESS and blood plasma and can be derived from the shape of the tracer concentration vs volume data

Dynamic Contrast Enhancement (DCE): The perfusion’s dynamic of specific Contrast Agent insight the tissues;

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Themis P. Exarchos, Athanasios Papadopoulos, Dimitrios I. Fotiadis
Chapter 1
Ioannis Dimou, Michalis Zervakis, David Lowe, Manolis Tsiknakis
The automation of diagnostic tools and the increasing availability of extensive medical datasets in the last decade have triggered the development... Sample PDF
Computational Methods and Tools for Decision Support in Biomedicine: An Overview of Algorithmic Challenges
Chapter 2
William Hsu, Alex A.T. Bui, Ricky K. Taira, Hooshang Kangarloo
Though an unparalleled amount and diversity of imaging and clinical data are now collected as part of routine care, this information is not... Sample PDF
Integrating Imaging and Clinical Data for Decision Support
Chapter 3
Spyretta Golemati, John Stoitsis, Konstantina S. Nikita
The estimation of motion of the myocardial and arterial wall is important for the quantification of tissue elasticity and contractility and has... Sample PDF
Analysis and Quantification of Motion within the Cardiovascular System: Implications for the Mechanical Strain of Cardiovascular Structures
Chapter 4
Christos V. Bourantas, Katerina Naka, Dimitrios Fotiadis, Lampros Michalis
Intracoronary Ultrasound (ICUS) imaging is an intravascular catheter-based technique which provides real-time, high resolution, cross-sectional... Sample PDF
New Developments in Intracoronary Ultrasound Processing
Chapter 5
Stavroula Mougiakakou, Ioannis Valavanis, Alexandra Nikita, Konstantina S. Nikita
Recent advances in computer science provide the intelligent computation tools needed to design and develop Diagnostic Support Systems (DSSs) that... Sample PDF
Diagnostic Support Systems and Computational Intelligence: Differential Diagnosis of Hepatic Lesions from Computed Tomography Images
Chapter 6
Marotesa Voultsidou, J. Michael Herrmann
Indicative features of an fMRI data set can be evaluated by methods provided by theory of random matrices (RMT). RMT considers ensembles of matrices... Sample PDF
Significance Estimation in fMRI from Random Matrices
Chapter 7
Dimitrios C. Karampinos, Robert Dawe, Konstantinos Arfanakis, John G. Georgiadis
Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue microstructure by probing the diffusion of water... Sample PDF
Optimal Diffusion Encoding Strategies for Fiber Mapping in Diffusion MRI
Chapter 8
Dimitrios G. Tsalikakis, Petros S. Karvelis, Dimitrios I. Fotiadis
Segmentation plays a crucial role in cardiac magnetic resonance imaging (CMRI) applications, since it permits automated detection of regions of... Sample PDF
Segmentation of Cardiac Magnetic Resonance Images
Chapter 9
Katia Marina Passera, Luca Tommaso Mainardi
Image registration is the process of determining the correspondence of features between images collected at different times or using different... Sample PDF
Image Registration Algorithms for Applications in Oncology
Chapter 10
Lena Costaridou, Spyros Skiadopoulos, Anna Karahaliou, Nikolaos Arikidis, George Panayiotakis
Breast cancer is the most common cancer in women worldwide. Mammography is currently the most effective modality in detecting breast cancer... Sample PDF
Computer-Aided Diagnosis in Breast Imaging: Trends and Challenges
Chapter 11
E. Kyriacou, C.I. Christodoulou, C. Loizou, M.S. Pattichis, C.S. Pattichis, S. Kakkos
Stroke is the third leading cause of death in the Western world and a major cause of disability in adults. The objective of this work was to... Sample PDF
Assessment of Stroke by Analysing Cartoid Plaque Morphology
Chapter 12
Marios Neofytou, Constantinos Pattichis, Vasilios Tanos, Marios Pattichis, Eftyvoulos Kyriacou
The objective of this chapter is to propose a quantitative hysteroscopy imaging analysis system in gynaecological cancer and to provide the current... Sample PDF
Quantitative Analysis of Hysteroscopy Imaging in Gynecological Cancer
Chapter 13
Thomas V. Kilindris, Kiki Theodorou
Patient anatomy, biochemical response, as well functional evaluation at organ level, are key fields that produce a significant amount of multi modal... Sample PDF
Combining Geometry and Image in Biomedical Systems: The RT TPS Case
Chapter 14
Ioannis Tsougos, George Loudos, Panagiotis Georgoulias, Konstantina S. Nikita, Kiki Theodorou
Quantitative three-dimensional nuclear medical imaging plays a continuously increasing role in radionuclide dosimetry, allowing the development of... Sample PDF
Internal Radionuclide Dosimetry using Quantitative 3-D Nuclear Medical Imaging
Chapter 15
Evanthia E. Tripoliti, Dimitrios I. Fotiadis, Konstantia Veliou
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) modality which can significantly improve our understanding of the brain... Sample PDF
Diffusion Tensor Imaging and Fiber Tractography
Chapter 16
Anastasios Koutlas, Dimitrios I. Fotiadis
The aim of this chapter is to analyze the recent advances in image processing and machine learning techniques with respect to facial expression... Sample PDF
Image Processing and Machine Learning Techniques for Facial Expression Recognition
Chapter 17
Arcangelo Merla
This chapter presents an overview on recent developments in the field of clinical applications of the functional infrared imaging. The functional... Sample PDF
Developments and Advances in Biomedical Functional Infrared Imaging
Chapter 18
Aristotelis Chatziioannou, Panagiotis Moulos
The completion of the Human Genome Project and the emergence of high-throughput technologies at the dawn of the new millennium, are rapidly changing... Sample PDF
DNA Microarrays: Analysis and Interpretation
Chapter 19
Nikolaos Giannakeas, Dimitrios I. Fotiadis
Microarray technology allows the comprehensive measurement of the expression level of many genes simultaneously on a common substrate. Typical... Sample PDF
Image Processing and Machine Learning Techniques for the Segmentation of cDNA
Chapter 20
Petros S. Karvelis, Dimitrios I. Fotiadis
Automated chromosome analysis is now becoming routine in most human cytogenetics laboratories. It involves both processing and analysis of digital... Sample PDF
Recent Advances in Automated Chromosome Image Analysis
Chapter 21
O. Lezoray, G. Lebrun, C. Meurie, C. Charrier, A. Elmotataz, M. Lecluse
The segmentation of microscopic images is a challenging application that can have numerous applications ranging from prognosis to diagnosis.... Sample PDF
Machine Learning in Morphological Segmentation
Chapter 22
Michael Haefner, Alfred Gangl, Michael Liedlgruber, A. Uhl, Andreas Vecsei, Friedrich Wrba
Wavelet-, Fourier-, and spatial domain-based texture classification methods have been used successfully for classifying zoom-endoscopic colon images... Sample PDF
Pit Pattern Classification Using Multichannel Features and Multiclassification
Chapter 23
C. Papaodysseus, P. Rousopoulos, D. Arabadjis, M. Panagopoulos, P. Loumou
In this chapter the state of the art is presented in the domain of automatic identification and classification of bodies on the basis of their... Sample PDF
Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images
Chapter 24
Alexia Giannoula, Richard S.C. Cobbold
“Elastography” or “elasticity imaging” can be defined as the science and methodology of estimating the mechanical properties of a medium (including... Sample PDF
Nonlinear Ultrasound Radiation-Force Elastography
Chapter 25
Valentina Russo, Roberto Setola
The aim of this chapter is to provide an overview about models and methodologies used for the Dynamic Contrast Enhancement (DCE) analysis. DCE is a... Sample PDF
Dynamic Contrast Enhancement: Analysis's Models and Methodologies
Chapter 26
George K. Matsopoulos
The accurate estimation of point correspondences is often required in a wide variety of medical image processing applications including image... Sample PDF
Automatic Correspondence Methods towards Point-Based Medical Image Registration: An Evaluation Study
Chapter 27
Alberto Taboada-Crispi, Hichem Sahli, Denis Hernandez-Pacheco, Alexander Falcon-Ruiz
Various approaches have been taken to detect anomalies, with certain particularities in the medical image scenario, linked to other terms... Sample PDF
Anomaly Detection in Medical Image Analysis
Chapter 28
C. Delgorge-Rosenberger, C. Rosenberger
The authors present in this chapter an overview on evaluation of medical image compression. The different methodologies used in the literature are... Sample PDF
Evaluation of Medical Image Compression
Chapter 29
Charalampos Doukas, Ilias Maglogiannis
Medical images are often characterized by high complexity and consist of high resolution image files, introducing thus several issues regarding... Sample PDF
Advanced ROI Coding Techniques for Medical Imaging
Chapter 30
Farhang Sahba
Ultrasound imaging now has widespread clinical use. It involves exposing a part of the body to highfrequency sound waves in order to generate images... Sample PDF
Segmentation Methods in Ultrasound Images
About the Editors
About the Contributors