Dynamic Maintenance in ChinaGrid Support Platform

Dynamic Maintenance in ChinaGrid Support Platform

Hai Jin (Huazhong University of Science and Technology, China), Li Qi (Huazhong University of Science and Technology, China), Jie Dai (Huazhong University of Science and Technology, China) and Yaqin Luo (Huazhong University of Science and Technology, China)
DOI: 10.4018/978-1-60566-184-1.ch030
OnDemand PDF Download:


A grid system is usually composed of thousands of nodes which are broadly distributed in different virtual organizations. Owing to geographical boundaries among these organizations, the system administrators suffer a great pressure to coordinate when grid system experiences a maintaining period. Furthermore, the runtime dynamicity of service state aggravates the complexity of tasks. Consequently, building an efficient and reliable maintaining model becomes an urgent challenge to ensure the correctness and consistency of grid nodes. In our experiment with ChinaGrid, a Dynamic Maintenance mechanism has been adopted in the fundamental grid middleware called ChinaGrid Support Platform. By resolving the above problems with system infrastructure, service dependency and service consistency, the availability of the system can be improved even the scope of maintenance extends to wider region.
Chapter Preview


Dynamic maintenance for large-scale resources in grid environment is a big challenge owing to complexity of grid services and exigent requirement of grid users. Inappropriate processes of maintenance lead to unpredictable failures in wide area. Due to geographical distribution of computing and data resources in different administrative regions, a reliable maintenance mechanism is urgently necessary to coordinate different hosts and ensure the efficiency of maintenance task.

For the administrators of grids, the maintaining task is running through the whole lifecycle of service components. As shown in Figure 1, Jin and Qi (2007) defined that each service component in grid has the lifecycle of: released, deployed, initialed, activated, and destroyed. Responding to these stages, the maintaining tasks include publish, deploy, undeploy, redeploy, configure, activate, and deactivate. Especially, these tasks should face the distributed challenges in grid environment.

Figure 1.

Lifecycle of service component

A number of earlier investigations have addressed providing and standardizing maintenance for distributed resources. The Configuration, Description, Deployment and Lifecycle Management (CDDLM), proposed by Open Grid Forum (2006), is to standardize distributed software deployment and configuration in a validated lifecycle. Another specification of deployment infrastructure, the Installable Unit Deployment Descriptor (IUDD) released by W3C (2004), also provides a solution of supporting dynamic maintenance in run-time execution environment. Web Services Distributed Management (2006), proposed by Organization for the Advancement of Structured Information Standards (OASIS), discusses how management of any resource can be accessed via web services protocols and management of the web services resources via the former. Talwar and Milojicic (2005) discussed the approaches for service deployment, and defined Quality of Manageability to measure the quality and efficiency of maintenance for service components.

Today’s domain consumers demand the maintenances without shutting down the system, but the existing specifications and solutions can not efficiently reduce the downtime due to maintenance. Therefore, the performance and availability of grid services during maintenance need further attention when focusing on the maintenance of resources.

As the improvement from infrastructure, researchers believe the feature of dynamic deployment in grid container can achieve higher availability. Weissman (2005) proposed an architecture basing on Apache Tomcat’s dynamic deployment functionality which allows service renovating and reconfiguring without taking down the whole site. Smith and Friese (2005) also introduced a similar solution to support dynamic deployment. Liu and Lewis (2005) designed an intermediate language X# to support the dynamic deployment among heterogeneous implementations of grid container.

Key Terms in this Chapter

Availability of Maintenance: The proportion of time a system is in a functioning condition in the watching period. More specifically, the availability during the maintenance is the ratio of system’s available time to the longest maintaining time (i.e., watching period).

Dynamic Maintenance: Dynamic maintenance includes the operations (e.g., deploy, undeploy, and so forth) to large scale service components in the runtime. The dynamicity of maintenance means that the maintenance will not affect the execution of existing components and promise the downtime as less as possible. Normally the maintaining requests are delivered by the administrators and provisioning modules.

Consistency of Maintenance: Due to the complexity of grid system, the maintenance to particular services always is propagated to many replications. Consistency is a measure to promise the maintenance can be finished in valid period or the correct order.

Service-/Container-/Global-level of Maintenance: The maintenance of any new service components involves reloading (reinitializing and reconfiguring) the service (or container or whole grid respectively).

Service Dependency: The correct execution of a service component is always depending on the hosting environment, the dependent calling services, and the dependent deployment service respectively.

Quality of Manageability: It is a measure of the ability to manage a system component. QoM measures include number of lines of configuration code (LOC) for deployment, number of steps involved in deployment, LOC to express configuration changes, and time to develop, deploy, and make a change.

Grid Container: It hosts web or grid services and executes user requests issued by clients that invoke operations defined by those services.

Dynamic Deployment: It denotes the ability for remote clients to request the upload and deployment of new services into, or the undeployment of existing services from, existing grid containers. It is a special case of dynamic maintenance.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Ruth E. Shaw
Emmanuel Udoh, Frank Zhigang Wang
Emmanuel Udoh
Chapter 1
Emmanuel Udoh, Frank Zhigang Wang, Vineet R. Khare
This chapter presents a historical record of the advent of Grid with a recourse to some basic definitions commonly accepted by most researchers. It... Sample PDF
Overview of Grid Computing
Chapter 2
Eric Aubanel
The problem of load balancing parallel applications is particularly challenging on computational grids, since the characteristics of both the... Sample PDF
Resource-Aware Load Balancing of Parallel Applications
Chapter 3
Enis Afgan, Purushotham Bangalore
Grid computing has emerged as the next generation computing platform. Because of the resource heterogeneity that exists in the grid environment... Sample PDF
Assisting Efficient Job Planning and Scheduling in the Grid
Chapter 4
Kuo-Chan Huang, Po-Chi Shih, Yeh-Ching Chung
Most current grid environments are established through collaboration among a group of participating sites which volunteer to provide free computing... Sample PDF
Effective Resource Allocation and Job Scheduling Mechanisms for Load Sharing in a Computational Grid
Chapter 5
Tevfik Kosar
As the data requirements of scientific distributed applications increase, the access to remote data becomes the main performance bottleneck for... Sample PDF
Data-Aware Distributed Batch Scheduling
Chapter 6
Gianni Pucciani, Flavia Donno, Andrea Domenici, Heinz Stockinger
Data replication is a well-known technique used in distributed systems in order to improve fault tolerance and make data access faster. Several... Sample PDF
Consistency of Replicated Datasets in Grid Computing
Chapter 7
Ming Wu, Xian-He Sun
Rapid advancement of communication technology has changed the landscape of computing. New models of computing, such as business-on-demand, Web... Sample PDF
Quality of Service of Grid Computing
Chapter 8
QoS in Grid Computing  (pages 75-83)
Zhihui Du, Zhili Cheng, Xiaoying Wang, Chuang Lin
This chapter first summarizes popular terms of QoS related concepts and technologies in grid computing, including SLA, End-to-End QoS Provision and... Sample PDF
QoS in Grid Computing
Chapter 9
Kris Bubendorfer, Ben Palmer, Ian Welch
A Grid resource broker is the arbiter for access to a Grid’s computational resources and therefore its performance and functionality has a... Sample PDF
Trust and Privacy in Grid Resource Auctions
Chapter 10
Sandro Fiore, Alessandro Negro, Salvatore Vadacca, Massimo Cafaro, Giovanni Aloisio, Roberto Barbera
Grid computing is an emerging and enabling technology allowing organizations to easily share, integrate and manage resources in a distributed... Sample PDF
An Architectural Overview of the GRelC Data Access Service
Chapter 11
Man Wang, Zhihui Du, Zhili Cheng
Resource Management System (RMS), which manages the Grid resources and matches the applications’ requests to the proper resources, is one of the... Sample PDF
Adaptive Resource Management in Grid Environment
Chapter 12
Vineet R. Khare, Frank Zhigang Wang
The need for a dynamic and scalable expansion of the grid infrastructure and resources and other scalability issues in terms of execution efficiency... Sample PDF
Bio-Inspired Grid Resource Management
Chapter 13
Yuhui Deng, Frank Zhigang Wang, Na Helian
Storage Grid is a new model for deploying and managing the heterogeneous, dynamic, large-scale, and geographically distributed storage resources.... Sample PDF
Service Oriented Storage System Grid
Chapter 14
Dominic Cherry, Maozhen Li, Man Qi
This chapter presents MediaGrid, a distributed storage system for archiving broadcast media contents. MediaGrid utilizes storage resources donated... Sample PDF
A Distributed Storage System for Archiving Broadcast Media Content
Chapter 15
Maozhen Li, Man Qi, Bin Yu
The computational grid is rapidly evolving into a service-oriented computing infrastructure that facilitates resource sharing and large-scale... Sample PDF
Service Discovery with Rough Sets
Chapter 16
Irfan Habib, Ashiq Anjum, Richard McClatchey
Due to some barriers to adoption we have not seen a proliferation of Grid Computing technologies throughout e-Science or other domains. This chapter... Sample PDF
On the Pervasive Adoption of Grid Technologies: A Grid Operating System
Chapter 17
Kurt Vanmechelen, Jan Broeckhove, Wim Depoorter, Khalid Abdelkader
As grid computing technology moves further up the adoption curve, the issues of dealing with conflicting user requirements formulated by different... Sample PDF
Pricing Computational Resources in Grid Economies
Chapter 18
Rosario M. Piro
Large, geographically distributed and heterogeneous computing infrastructures, such as the Grid, often span multiple organizations and... Sample PDF
Resource Usage Accounting in Grid Computing
Chapter 19
Frans Arickx, Jan Broeckhove, Peter Hellinckx, David Dewolfs, Kurt Vanmechelen
Quantum structure or scattering calculations often belong to a class of computational problems involving the aggregation of a set of matrices... Sample PDF
Grid-Based Nuclear Physics Applications
Chapter 20
Gabriel Aparicio, Fernando Blanco, Ignacio Blanquer, César Bonavides, Juan Luis Chaves, Miguel Embid, Álvaro Hernández
In the last years an increasing demand for Grid Infrastructures has resulted in several international collaborations. This is the case of the EELA... Sample PDF
Developing Biomedical Applications in the Framework of EELA
Chapter 21
Gerald Schaefer, Roger Tait
Efficient approaches to computationally intensive image processing tasks are currently highly sought after. In this chapter, the authors show how a... Sample PDF
Distributed Image Processing on a Blackboard System
Chapter 22
Daniele Andreotti, Armando Fella, Eleonora Luppi
The BaBar experiment uses data since 1999 in examining the violation of charge and parity (CP) symmetry in the field of high energy physics. This... Sample PDF
Simulated Events Production on the Grid for the BaBar Experiment
Chapter 23
Diego Liberati
A framework is proposed that creates, uses, and communicates information, whose organizational dynamics allows performing a distributed cooperative... Sample PDF
A Framework for Semantic Grid in E-Science
Chapter 24
Roberto Barbera, Valeria Ardizzone, Leandro Ciuffo
The Grid INFN virtual Laboratory for Dissemination Activities (GILDA) is a fully working Grid test-bed devoted to training and dissemination... Sample PDF
Grid INFN Virtual Laboratory for Dissemination Activities (GILDA)
Chapter 25
Dirk Gorissen, Tom Dhaene, Piet Demeester, Jan Broeckhove
The simulation and optimization of complex systems is a very time consuming and computationally intensive task. Therefore, global surrogate modeling... Sample PDF
Grid Enabled Surrogate Modeling
Chapter 26
Patrik Skogster
Grid computing is becoming as essential part of different business analysis. In traditional business computing infrastructures data transfer occurs... Sample PDF
GIS Grids and the Business Use of GIS Data
Chapter 27
Gokop Goteng, Ashutosh Tiwari, Rajkumar Roy
The emerging grid technology provides a secured platform for multidisciplinary experts in the security intelligence profession to collaborate and... Sample PDF
Grid Computing: Combating Global Terrorism with the World Wide Grid
Chapter 28
Salvatore Scifo
This chapter focuses on the efforts to design and develop a standard pure Java API to access the metadata service of the EGEE Grid middleware, and... Sample PDF
Accessing Grid Metadata through a Web Interface
Chapter 29
Jyotsna Sharma
Efforts in Grid Computing, both in academia and industry, continue to grow rapidly worldwide for research, scientific and commercial purposes.... Sample PDF
Grid Computing Initiatives in India
Chapter 30
Hai Jin, Li Qi, Jie Dai, Yaqin Luo
A grid system is usually composed of thousands of nodes which are broadly distributed in different virtual organizations. Owing to geographical... Sample PDF
Dynamic Maintenance in ChinaGrid Support Platform
About the Contributors