Flexible Multimedia Stream Authentication

Flexible Multimedia Stream Authentication

Tieyan Li (Institute for Infocomm Research (I2R), Singapore)
Copyright: © 2009 |Pages: 20
DOI: 10.4018/978-1-60566-262-6.ch017
OnDemand PDF Download:


The multimedia community is moving from monolithic applications to more flexible and scalable proliferate solutions. Security issues such as access control and authentication of multimedia content have been intensively studied in the literature. In particular, stream authentication tends to be more complicated since a stream may be transcoded by intermediate proxies or composed by multiple sources. Traditional stream authentication schemes consider a stream as a group of packets and authenticate these packets over an erasure channel. However, by fixing the packets in transmission, any packet manipulation will cause authentication failure. In this chapter, we assume a more flexible model where a proxy, between a sender and a receiver, is able to make transcoding operations over a stream. We describe a flexible stream authentication framework that allows the so called packet independent stream authentication schemes to make transcoding operations on the packets and commit the changes, which are not applicable n packet-based stream authentication schemes. Such a stream authentication scheme based on the layered structure of a stream is elaborated in details w.r.t., the encoding, packing, amortizing, and verifying methods. The security and performance analysis show that the packet independent stream authentication schemes achieve higher authentication rate with less overhead per packet, as compared with that of packet based schemes.
Chapter Preview

1 Introduction

Multimedia data, such as image, audio and video, come fast and furious in everyone’s life, thanks to the advances in digital signal processing and inter-networking technologies. End users are experiencing innovative streaming applications (e.g., video-on-demand, IPTV) effectively and benefiting more from the widely adopted pervasive architectures. As multimedia data are being disseminated anywhere, a number of security issues are arisen as the major concerns on protecting such digital assets. One research trend is on protecting the media content from being disclosed to the unauthorized users, w.r.t., “the secure media transmission” problem, which addresses the “confidentiality” security property. All major Digital Right Management (DRM) solutions are providing this security function via hardware or software protection techniques. While this is important, another trend on authenticating the media content is even more important, as it is more dangerous to receive a tampered (or misleading) message than a scrambled (or unreadable) message in a security sense. Thus, both the security properties, media origin “authenticity” and media data “integrity”, are to be addressed in multimedia authentication. In this chapter, we concentrate on the stream authentication techniques in particular and present a generic flexible stream authentication framework.

Message authentication has been intensively studied in traditional cryptographic research field for more than twenty years. Typically, a message, no matter how long it is, is first compressed into a fixed length digital digest. The digest is then signed using some digital signature scheme that generates a signature based on the digest. In transmission, both the message itself and its signature are to be bundled together and sent to the receivers. On receiving the message, a receiver computes the digest with the same way as the originator does and uses the verification algorithm to verify the digest against the signature. An illustrative example is given in Section 2.1. It is nature to think of using the similar authentication scheme on multimedia data, as one just treats the multimedia data as an ordinary message. However, it turns out to be inconvenient, if not impossible, to authenticate multimedia data in this way. In fact, multimedia data have some unique features compared with messages, and thus deserve specially designed and dedicated authentication techniques.

Firstly, representing multimedia data requires a large amount of information and sometimes, there is no clear ending (e.g., of real-time streaming). In case of multimedia stream, instead of authenticating the whole stream at once, a stream is divided into various blocks and these blocks are to be authenticated one by one. As a result, only part of a stream is authenticated at certain time and the authentication process is a progressive procedure until the last block is verified. Secondly, the dominant requirements for bandwidth and energy consumption on stream transmission cause the significant bottlenecks. To improve the quality of a multimedia service, transcoding is required to adapt a stream with various multimedia communication conditions, which is possible to help overcome the bottlenecks. Hence, some portions of the original stream content are to be abandoned due to the limitations (e.g., narrow bandwidth). Therefore, one can not tell whether a stream is authenticated or not as a single unit, but how much percentage of a stream is authenticated, or what is the authentication probability of a received stream. Thirdly, even there is no obvious manipulation on original multimedia content, there might still be partial content being lost in the delivery channel. For example, Internet is such a lossy channel as it loses IP packets from time to time. Some researchers proposed to use erasure code to tolerate arbitrary patterns of packet loss. However, there are intentional attacks on the delivery channel where data might be intercepted, altered and injected. How to authenticate a stream in a malicious channel is still being studied intensively. Last but not least, many multimedia applications allow multiple streams to be composed into a single stream (e.g., movie advertisement, multi-screening and digital art creation), which are called “Stream Composition”. How to authenticate multiple sources in a composite stream and how to maintain the integrity of those media content are the ongoing research directions. To address these challenges, the multimedia security community is working very hard on providing the authentication techniques that are secure, effective and flexible.

Key Terms in this Chapter

Multimedia Authentication: Refers to the technology to verify that the multimedia content comes from the alleged sources and has not been altered illegally in transmission.

P-SAS: Refers to Packet based Stream Authentication Scheme, the method to generate authentication data based on the packets. Thus, only after packets are produced, the authentication data can be generated and amortized back onto those packets.

Amortization: The technology to divide a message into multiple parts and assign them over different packets.

Transcoding: The method to remove part of the stream content to adapt to the bandwidth of the transmission channel.

Verify: The algorithm in a digital signature scheme used to verify a cryptographically generated signature using the signer’s public key.

Sign: The algorithm in a digital signature scheme used to generate a cryptography value-signature over a message using one’s private key.

PiSAS: Refers to Packet independent Stream Authentication Scheme, the method to generate authentication data based on the multimedia content. Thus, the authentication data can be generated and amortized onto original multimedia content, which is independent of the packing process.

Message Authentication: Refers to the procedure to verify that a message comes from the alleged source and has not been altered during transmission.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Borko Furht
Shiguo Lian, Yan Zhang
Shiguo Lian, Yan Zhang
Chapter 1
Pramod A. Jamkhedkar, Gregory L. Heileman
Rights expression languages (RELs) form a central component of digital rights management (DRM) systems. The process of development of RELs... Sample PDF
Rights Expression Languages
Chapter 2
Deepali Brahmbhatt, Mark Stamp
This chapter presents a digital rights management (DRM) system designed for streaming media. A brief, general introduction to DRM is also provided... Sample PDF
Digital Rights Management for Streaming Media
Chapter 3
Jean-Henry Morin
This chapter introduces and discusses much needed alternatives to the traditional either/or debate on total security of secure multimedia... Sample PDF
Rethinking DRM Using Exception Management
Chapter 4
Mercè Serra Joan, Bert Greevenbosch, Anja Becker, Harald Fuchs
This chapter gives an overview of the Open Mobile AllianceTM Digital Rights Management (OMA DRM) standard, which allows for the secure distribution... Sample PDF
Overview of OMA Digital Rights Management
Chapter 5
Hugo Jonker, Sjouke Mauw
The use of Digital Rights Management (DRM) systems involves several stakeholders, such as the content provider, the license provider, and the user... Sample PDF
Discovering the Core Security Requirements of DRM Systems by Means of Objective Trees
Chapter 6
Pallavi Priyadarshini, Mark Stamp
Peer-to-peer (P2P) networks have proliferated and become ubiquitous. A school of thought has emerged that harnessing the established user-base and... Sample PDF
Digital Rights Management for Untrusted Peer-to-Peer Networks
Chapter 7
L. Badia, A. Erta, U. Malesci
Traditional analog video surveillance systems technology has recently become inadequate to face the massive demand of security systems consisting of... Sample PDF
Pervasive Video Surveillance Systems Over TCP/IP Networks
Chapter 8
Ramya Venkataramu, Mark Stamp
Digital Rights Management (DRM) technology is used to control access to copyrighted digital content. Apple employs a DRM system known as Fairplay in... Sample PDF
P2PTunes: A Peer-to-Peer Digital Rights Management System
Chapter 9
Nicolas Anciaux, Luc Bouganim, Philippe Pucheral
This chapter advocates the convergence between Access Control (AC) models, focusing on the granularity of sharing, and Digital Right Management... Sample PDF
A Hardware Approach for Trusted Access and Usage Control
Chapter 10
Ionut Florescu
Regarding fundamental protocols in cryptography, the Diffie-Hellman (Diffie and Hellman, 1976) public key exchange protocol is one of the oldest and... Sample PDF
A Summary of Recent and Old Results on the Security of the Diffie-Hellman Key Exchange Protocol in Finite Groups
Chapter 11
Guojun Wang, Yirong Wu, Geyong Min, Ronghua Shi
Secret sharing aims at distributing and sharing a secret among a group of participants efficiently. In this chapter, we propose a plane-based access... Sample PDF
Secret Sharing with k-Dimensional Access Structure
Chapter 12
Supavadee Aramvith, Rhandley D. Cajote
Presently, both wireless communications and multimedia communications have experienced unequaled rapid growth and commercial success. Building on... Sample PDF
Wireless Video Transmission
Chapter 13
M. Hassan Shirali-Shahreza, Mohammad Shirali-Shahreza
Establishing hidden communication is an important subject of discussion that has gained increasing importance recently, particularly with the... Sample PDF
A Survey of Information Hiding
Chapter 14
Fan Zhang
The digital multimedia, including text, image, graphics, audio, video, and so forth, has become a main way for information communication along with... Sample PDF
Digital Watermarking Capacity and Detection Error Rate
Chapter 15
Digital Watermarking  (pages 277-297)
Aidan Mooney
As Internet usage continues to grow, people are becoming more aware of the need to protect the display and presentation of digital documents.... Sample PDF
Digital Watermarking
Chapter 16
Pradeep K. Atrey, Abdulmotaleb El Saddik, Mohan Kankanhalli
Digital video authentication has been a topic of immense interest to researchers in the past few years. Authentication of a digital video refers to... Sample PDF
Digital Video Authentication
Chapter 17
Tieyan Li
The multimedia community is moving from monolithic applications to more flexible and scalable proliferate solutions. Security issues such as access... Sample PDF
Flexible Multimedia Stream Authentication
Chapter 18
K-G Stenborg
Media that is distributed digitally can be copied and redistributed illegally. Embedding an individual watermark in the media object for each... Sample PDF
Scalable Distribution of Watermarked Media
Chapter 19
Hafiz Malik
This chapter provides critical analysis of current state-of-the-art in steganography. First part of the this chapter provides the classification of... Sample PDF
Critical Analysis of Digital Steganography
Chapter 20
Esther Palomar, Juan M.E. Tapiador, Julio C. Hernandez-Castro, Arturo Ribagorda
Perhaps the most popular feature offered by Peer-to-Peer (P2P) networks is the possibility of having several replicas of the same content... Sample PDF
Secure Content Distribution in Pure P2P
Chapter 21
Andreas U. Schmidt, Nicolai Kuntze
Security in the value creation chain hinges on many single components and their interrelations. Trusted Platforms open ways to fulfil the pertinent... Sample PDF
Trust in the Value-Creation Chain of Multimedia Goods
Chapter 22
Goo-Rak Kwon, Sung-Jea Ko
The objective of this chapter introduces an advanced encryption of MP3 and MPEG-4 coder with a quality degradation-based security model. For the MP3... Sample PDF
Copyright Protection of A/V Codec for Mobile Multimedia Devices
Chapter 23
Frank Y. Shih, Yi-Ta Wu
Steganography is the art of hiding secret data inside other innocent media file. Steganalysis is the process of detecting hidden data which are... Sample PDF
Digital Steganography Based on Genetic Algorithm
Chapter 24
Guangjie Liu, Shiguo Lian, Yuewei Dai, Zhiquan Wang
Image steganography is a common form of information hiding which embeds as many message bits into images and keep the introduced distortion... Sample PDF
Adaptive Image Steganography Based on Structural Similarity Metric
Chapter 25
Shiguo Lian
Video watermarking technique embeds some information into videos by modifying video content slightly. The embedded information, named watermark, may... Sample PDF
A Survey on Video Watermarking
Chapter 26
Minglei Liu, Ce Zhu
Digital watermarking is a useful and powerful tool for multimedia security such as copyright protection, tamper proofing and assessment, broadcast... Sample PDF
Multiple Description Coding with Application in Multimedia Watermarking
Chapter 27
Hsuan T. Chang, Chih-Chung Hsu
This chapter introduces a pioneer concept in which multiple images are simultaneously considered in the compression and secured distribution... Sample PDF
Fractal-Based Secured Multiple-Image Compression and Distribution
About the Contributors