A Formal Specification of the Memorization Process

A Formal Specification of the Memorization Process

Natalia López (Universidad Complutense de Madrid, Spain), Manuel Núñez (Universidad Complutense de Madrid, Spain) and Fernando L. Pelayo (Universidad de Castilla-La Mancha, Spain)
Copyright: © 2009 |Pages: 14
DOI: 10.4018/978-1-60566-170-4.ch011
OnDemand PDF Download:


In this chapter we present the formal language, stochastic process algebra (STOPA), to specify cognitive systems. In addition to the usual characteristics of these formalisms, this language features the possibility of including stochastic time. This kind of time is useful to represent systems where the delays are not controlled by fixed amounts of time, but are given by probability distribution functions. In order to illustrate the usefulness of our formalism, we will formally represent a cognitive model of the memory. Following contemporary theories of memory classification (see Squire et al., 1993; Solso, 1999) we consider sensory buffer, short-term, and long-term memories. Moreover, borrowing from Y. Wang and Y. Wang (2006), we also consider the so-called action buffer memory.
Chapter Preview


Cognitive informatics (Wang, 2002a, 2007a) is a relatively new field of knowledge. In fact, we are still in a period where new mechanisms are being introduced in the field. These include implementation and representation languages, theoretical models, algorithms, etc. However, not all the advances in cognitive informatics are completely novel. In fact, we may (and should!) take advantage of other more mature fields. For example, this is the case of the development of frameworks for the formal specification of cognitive systems. The introduction of RTPA (Wang, 2002b, 2003) represents a very adequate step in this direction. By conveniently putting together the ideas underlying classical process algebras, RTPA is a new framework to represent cognitive processes and systems.

In order to understand why we consider stochastic time, it is worth to briefly review the main milestones in the development of process algebras (see (Bergstra, 2001) for a good overview of the current research topics in the field and (Hoare, 1985; Milner, 1989; Baeten and Weijland, 1990) for the presentation of the classical formalisms). Process algebras are very suitable to formally specify systems where concurrency is an essential key. The first work was very significant, mainly to shed light on concepts and to open research methodologies. However, due to the abstraction of the complicated features, models were still far from real systems. Therefore, some of the solutions were not specific enough, for instance, those related to real time systems. In particular, features which were abstracted before have been introduced in the models. Thus, they allow the design of systems where not only functional requirements but also performance ones are included. The most significant of these additions are related to notions such as time (e.g. (Reed and Roscoe, 1988; Nicollin and Sifakis, 1991; Yi, 1991; Davies and Schneider, 1995; Baeten and Middelburg, 2002)) and probabilities (e.g. (Glabbeek et al., 1995; Núñez et al., 1995; Núñez and Frutos, 1995; Cleaveland et al., 1999; Cazorla et al., 2003)). An attempt to integrate time and probabilistic information has been given by introducing stochastic process algebras (e.g. (Gцtz et al., 1993; Hillston, 1996; Bernardo and Gorrieri, 1998; Pelayo et al., 2000; López and Núñez, 2001)). Most stochastic process algebras work exclusively with exponential distributions (some exceptions are (Bravetti et al., 1998; D’Argenio et al., 1998; Harrison and Strulo, 2000; Bravetti and Gorrieri, 2002; López, 2004)). The problem is that the combination of parallel/concurrency composition operators and general distributions strongly complicates the definition of semantic models. That is why stochastic process algebras are usually based on (semi)-Markov chains. However, this assumption decreases the expressiveness of the language, because it does not allow to properly express some behaviors where timed distributions are not exponential.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Yingxu Wang
Chapter 1
Yingxu Wang
Cognitive Informatics (CI) is a transdisciplinary enquiry of the internal information processing mechanisms and processes of the brain and natural... Sample PDF
The Theoretical Framework of Cognitive Informatics
Chapter 2
Withold Kinsner
This chapter provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition, and... Sample PDF
Is Entropy Suitable to Characterize Data and Signals for Cognitive Informatics?
Chapter 3
Ismael Rodríguez, Manuel Núñez, Fernando Rubio
Finite State Machines (FSM) are formalisms that have been used for decades to describe the behavior of systems. They can also provide an intelligent... Sample PDF
Cognitive Processes by using Finite State Machines
Chapter 4
Yingxu Wang
An interactive motivation-attitude theory is developed based on the Layered Reference Model of the Brain (LRMB) and the Object-Attribute-Relation... Sample PDF
On the Cognitive Processes of Human Perception with Emotions, Motivations, and Attitudes
Chapter 5
Qingyong Li, Zhiping Shi, Zhongzhi Shi
Sparse coding theory demonstrates that the neurons in the primary visual cortex form a sparse representation of natural scenes in the viewpoint of... Sample PDF
A Selective Sparse Coding Model with Embedded Attention Mechanism
Chapter 6
Yingxu Wang
Theoretical research is predominately an inductive process, while applied research is mainly a deductive process. Both inference processes are based... Sample PDF
The Cognitive Processes of Formal Inferences
Chapter 7
Douglas Griffith, Frank L. Greitzer
The purpose of this article is to re-address the vision of human-computer symbiosis as originally expressed by J.C.R. Licklider nearly a... Sample PDF
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction
Chapter 8
Ray E. Jennings
Although linguistics may treat languages as a syntactic and/or semantic entity that regulates both language production and comprehension, this... Sample PDF
Language, Logic, and the Brain
Chapter 9
Yingxu Wang, Guenther Ruhe
Decision making is one of the basic cognitive processes of human behaviors by which a preferred option or a course of actions is chosen from among a... Sample PDF
The Cognitive Process of Decision Making
Chapter 10
Tiansi Dong
This chapter proposes a commonsense understanding of distance and orientation knowledge between extended objects, and presents a formal... Sample PDF
A Commonsense Approach to Representing Spatial Knowledge Between Extended Objects
Chapter 11
Natalia López, Manuel Núñez, Fernando L. Pelayo
In this chapter we present the formal language, stochastic process algebra (STOPA), to specify cognitive systems. In addition to the usual... Sample PDF
A Formal Specification of the Memorization Process
Chapter 12
Yingxu Wang
Autonomic computing (AC) is an intelligent computing approach that autonomously carries out robotic and interactive applications based on goal- and... Sample PDF
Theoretical Foundations of Autonomic Computing
Chapter 13
Witold Kinsner
Numerous attempts are being made to develop machines that could act not only autonomously, but also in an increasingly intelligent and cognitive... Sample PDF
Towards Cognitive Machines: Multiscale Measures and Analysis
Chapter 14
Amar Ramdane-Cherif
Cognitive approach through the neural network (NN) paradigm is a critical discipline that will help bring about autonomic computing (AC). NN-related... Sample PDF
Towards Autonomic Computing: Adaptive Neural Network for Trajectory Planning
Chapter 15
Lee Flax
We give an approach to cognitive modelling, which allows for richer expression than the one based simply on the firing of sets of neurons. The... Sample PDF
Cognitive Modelling Applied to Aspects of Schizophrenia and Autonomic Computing
Chapter 16
Yan Zhao, Yiyu Yao
Classification is one of the main tasks in machine learning, data mining, and pattern recognition. Compared with the extensively studied automation... Sample PDF
Interactive Classification Using a Granule Network
Chapter 17
Mehdi Najjar, André Mayers
Encouraging results of last years in the field of knowledge representation within virtual learning environments confirms that artificial... Sample PDF
A Cognitive Computational Knowledge Representation Theory
Chapter 18
Du Zhang
A crucial component of an intelligent system is its knowledge base that contains knowledge about a problem domain. Knowledge base development... Sample PDF
A Fixpoint Semantics for Rule-Base Anomalies
Chapter 19
Christine W. Chan
This chapter presents a method for ontology construction and its application in developing ontology in the domain of natural gas pipeline... Sample PDF
Development of an Ontology for an Industrial Domain
Chapter 20
Václav Rajlich, Shaochun Xu
This article explores the non-monotonic nature of the programmer learning that takes place during incremental program development. It uses a... Sample PDF
Constructivist Learning During Software Development
Chapter 21
Witold Kinsner
Many scientific chapters treat the diversity of fractal dimensions as mere variations on either the same theme or a single definition. There is a... Sample PDF
A Unified Approach to Fractal Dimensions
Chapter 22
Du Zhang, Witold Kinsner, Jeffrey Tsai, Yingxu Wang, Philip Sheu, Taehyung Wang
The 2005 IEEE International Conference on Cognitive Informatics (ICCI’05) was held during August 8th to 10th 2005 on the campus of University of... Sample PDF
Cognitive Informatics: Four Years in Practice
Chapter 23
Yiyu Yao, Zhongzhi Shi, Yingxu Wang, Witold Kinsner, Yixin Zhong, Guoyin Wang
Cognitive informatics (CI) is a cutting-edge and multidisciplinary research area that tackles the fundamental problems shared by modern informatics... Sample PDF
Toward Cognitive Informatics and Cognitive Computers: A Report on IEEE ICCI'06
About the Contributors