A Fuzzy Decision Tree Analysis of Traffic Fatalities in the US

A Fuzzy Decision Tree Analysis of Traffic Fatalities in the US

Malcolm J. Beynon (Cardiff University, UK)
DOI: 10.4018/978-1-59904-982-3.ch012
OnDemand PDF Download:
$37.50

Abstract

This chapter considers the role of fuzzy decision trees as a tool for intelligent data analysis in domestic travel research. It demonstrates the readability and interpretability the findings from fuzzy decision tree analysis can pertain, first presented in a small problem allowing the fullest opportunity for the analysis to be followed. The investigation of the traffic fatalities in the states of the US offers an example of a more comprehensive fuzzy decision tree analysis. The graphical representations of the fuzzy based membership functions show how the necessary linguistic terms are defined. The final fuzzy decision trees, both tutorial and US traffic fatalities based, show the structured form the analysis offers, as well as more readable decision rules contained therein.
Chapter Preview
Top

Introduction

In a wide discussion on the issue of data analysis, Breiman (2001) advocates the need for the development of new techniques, suggesting that the interpretation of results has an equal if not more important role to play than the simple predictive accuracy often only identified. Beyond the statistical inference from traditional regression type analyses of data, for many researchers, the set-up costs necessary to understand novel techniques can dissuade them from their employment. Domestic travel research is one such area that can benefit from the interpretable results accrued, since policy making is often the central desire of the study undertaken (see for example, Ewing, 2003; Noland, 2003; Shemer, 2004).

This self-induced doubt may be true with the possible employment of nascent techniques based on uncertain reasoning (Chen, 2001), which in one way or another, attempt to take into account the possible imperfection and/or relevance of the data to be studied. These imperfections include the imprecision of individual data values and in the more extreme case when a number of them are missing (incompleteness). One associated general methodology, fuzzy set theory (FST), introduced in Zadeh (1965), is closely associated with uncertain reasoning (Zadeh, 2005), including the opportunities to develop traditional techniques so that they incorporate vagueness and ambiguity in their operations. Within this fuzzy environment, data analysis is also extended to allow a linguistic facet to the possible interpretation of results.

In this chapter the technical emphasis is in the general area of decision trees within a fuzzy environment, a technique for the classification of objects described by a number of attributes. Armand, Watelain, Roux, Mercier, and Lepoutre (2007, p. 476) present a recent, succinct, description of what fuzzy decision trees offer;

Fuzzy decision trees (FDT) incorporate a notion of fuzziness that permits inaccuracy and uncertainty to be introduced and allow the phenomena under consideration to be expressed using natural language.”

Their application in gait analysis they believe benefits from the allowance for imprecision and interpretability. Pertinent for this edited book, Wang, Nauck, Spott, and Kruse (2007) consider fuzzy decision trees in relation to intelligent data analysis, motivation for their study was the belief that typical business users prefer softwares, which hide complexity from users and automate the data analysis process. There is a further implication when using fuzzy decision trees, namely that it inherently includes feature selection (Mikut, Jäkel, & Gröll, 2005), whereby small subsets of features are found with high-discriminating power.

The fuzzy approach employed here was presented in Yuan and Shaw (1995) and Wang, Chen, Qian, and Ye (2000), and attempts to include the cognitive uncertainties evident in the imprecision inherent with the data values. This is, notably, through the construction of fuzzy membership functions (MFs), which enable levels of association to the linguistic variable representation of the numerical attributes considered (Kecman, 2001).

The problem considered in this study concerns road travel in the US, namely the discernment of the levels of traffic fatalities across the individual states. This issue has attracted much attention (see Noland, 2003), one reason being that these accidents account for a significant proportion of premature fatalities in the US (and most other developed countries for that matter, see Shemer, 2004). As such they have been the focus of much attention in many fields of scientific study, from accident prevention to economic, social and behavioural analysis (Zobeck, Grant, Stinson, & Bettolucci 1994; Washington, Metarko, Fomumung, Ross, Julian, & Moran, 1999; Farmer & Williams, 2005).

Complete Chapter List

Search this Book:
Reset
Editorial Advisory Board
Table of Contents
Preface
Hsiao-Fan Wang
Acknowledgment
Hsiao-Fan Wang
Chapter 1
Martin Spott, Detlef Nauck
This chapter introduces a new way of using soft constraints for selecting data analysis methods that match certain user requirements. It presents a... Sample PDF
Automatic Intelligent Data Analysis
$37.50
Chapter 2
Hung T. Nguyen, Vladik Kreinovich, Gang Xiang
It is well known that in decision making under uncertainty, while we are guided by a general (and abstract) theory of probability and of statistical... Sample PDF
Random Fuzzy Sets: Theory & Applications
$37.50
Chapter 3
Gráinne Kerr, Heather Ruskin, Martin Crane
Microarray technology1 provides an opportunity to monitor mRNA levels of expression of thousands of genes simultaneously in a single experiment. The... Sample PDF
Pattern Discovery in Gene Expression Data
$37.50
Chapter 4
Erica Craig, Falk Huettmann
The use of machine-learning algorithms capable of rapidly completing intensive computations may be an answer to processing the sheer volumes of... Sample PDF
Using "Blackbox" Algorithms Such AS TreeNET and Random Forests for Data-Ming and for Finding Meaningful Patterns, Relationships and Outliers in Complex Ecological Data: An Overview, an Example Using G
$37.50
Chapter 5
Eulalia Szmidt, Marta Kukier
We present a new method of classification of imbalanced classes. The crucial point of the method lies in applying Atanassov’s intuitionistic fuzzy... Sample PDF
A New Approach to Classification of Imbalanced Classes via Atanassov's Intuitionistic Fuzzy Sets
$37.50
Chapter 6
Arun Kulkarni, Sara McCaslin
This chapter introduces fuzzy neural network models as means for knowledge discovery from databases. It describes architectures and learning... Sample PDF
Fuzzy Neural Network Models for Knowledge Discovery
$37.50
Chapter 7
Ivan Bruha
This chapter discusses the incorporation of genetic algorithms into machine learning. It does not present the principles of genetic algorithms... Sample PDF
Genetic Learning: Initialization and Representation Issues
$37.50
Chapter 8
Evolutionary Computing  (pages 131-142)
Thomas E. Potok, Xiaohui Cui, Yu Jiao
The rate at which information overwhelms humans is significantly more than the rate at which humans have learned to process, analyze, and leverage... Sample PDF
Evolutionary Computing
$37.50
Chapter 9
M. C. Bartholomew-Biggs, Z. Ulanowski, S. Zakovic
We discuss some experience of solving an inverse light scattering problem for single, spherical, homogeneous particles using least squares global... Sample PDF
Particle Identification Using Light Scattering: A Global Optimization Problem
$37.50
Chapter 10
Dominic Savio Lee
This chapter describes algorithms that use Markov chains for generating exact sample values from complex distributions, and discusses their use in... Sample PDF
Exact Markov Chain Monte Carlo Algorithms and Their Applications in Probabilistic Data Analysis and Inference
$37.50
Chapter 11
J. P. Ganjigatti, Dilip Kumar Pratihar
In this chapter, an attempt has been made to design suitable knowledge bases (KBs) for carrying out forward and reverse mappings of a Tungsten inert... Sample PDF
Design and Development of Knowledge Bases for Forward and Reverse Mappings of TIG Welding Process
$37.50
Chapter 12
Malcolm J. Beynon
This chapter considers the role of fuzzy decision trees as a tool for intelligent data analysis in domestic travel research. It demonstrates the... Sample PDF
A Fuzzy Decision Tree Analysis of Traffic Fatalities in the US
$37.50
Chapter 13
Dymitr Ruta, Christoph Adl, Detlef Nauck
In the telecom industry, high installation and marketing costs make it six to 10 times more expensive to acquire a new customer than it is to retain... Sample PDF
New Churn Prediction Strategies in the Telecom Industry
$37.50
Chapter 14
Malcolm J. Beynon
This chapter demonstrates intelligent data analysis, within the environment of uncertain reasoning, using the recently introduced CaRBS technique... Sample PDF
Intelligent Classification and Ranking Analyses Using CARBS: Bank Rating Applications
$37.50
Chapter 15
Fei-Chen Hsu, Hsiao-Fan Wang
In this chapter, we used Cumulative Prospect Theory to propose an individual risk management process (IRM) including a risk analysis stage and a... Sample PDF
Analysis of Individual Risk Attitude for Risk Management Based on Cumulative Prospect Theory
$37.50
Chapter 16
Francesco Giordano, Michele La Rocca, Cira Perna
This chapter introduces the use of the bootstrap in a nonlinear, nonparametric regression framework with dependent errors. The aim is to construct... Sample PDF
Neural Networks and Bootstrap Methods for Regression Models with Dependent Errors
$37.50
Chapter 17
Lean Yu, Shouyang Wang, Kin Keung Lai
Financial crisis is a kind of typical rare event, but it is harmful to economic sustainable development if occurs. In this chapter, a... Sample PDF
Financial Crisis Modeling and Prediction with a Hilbert-EMD-Based SVM Approachs
$37.50
Chapter 18
Chun-Jung Huang, Hsiao-Fan Wang, Shouyang Wang
One of the key problems in supervised learning is due to the insufficient size of the training data set. The natural way for an intelligent learning... Sample PDF
Virtual Sampling with Data Construction Analysis
$37.50
About the Contributors