A Genetic Algorithm-Artificial Neural Network Method for the Prediction of Longitudinal Dispersion Coefficient in Rivers

A Genetic Algorithm-Artificial Neural Network Method for the Prediction of Longitudinal Dispersion Coefficient in Rivers

Jianhua Yang (University of Warwick, UK), Evor L. Hines (University of Warwick, UK), Ian Guymer (University of Warwick, UK), Daciana D. Iliescu (University of Warwick, UK), Mark S. Leeson (University of Warwick, UK), Gregory P. King (University of Warwick, UK) and XuQuin Li (University of Warwick, UK)
DOI: 10.4018/978-1-59904-996-0.ch019
OnDemand PDF Download:


In this chapter a novel method, the Genetic Neural Mathematical Method (GNMM), for the prediction of longitudinal dispersion coefficient is presented. This hybrid method utilizes Genetic Algorithms (GAs) to identify variables that are being input into a Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN), which simplifies the neural network structure and makes the training process more efficient. Once input variables are determined, GNMM processes the data using an MLP with the back-propagation algorithm. The MLP is presented with a series of training examples and the internal weights are adjusted in an attempt to model the input/output relationship. GNMM is able to extract regression rules from the trained neural network. The effectiveness of GNMM is demonstrated by means of case study data, which has previously been explored by other authors using various methods. By comparing the results generated by GNMM to those presented in the literature, the effectiveness of this methodology is demonstrated.
Chapter Preview


An important application of environmental hydraulics is the prediction of the fate and transport of pollutants that are released into watercourses, either as a result of accidents or as regulated discharges. Such predictions are primarily dependent on the water velocity, longitudinal mixing, and chemical/physical reactions etc, of which longitudinal dispersion coefficient is a key variable for the description of the longitudinal spreading in a river.

The concept of longitudinal dispersion coefficient was first introduced in Taylor (1954). Based on this work, the following integral expression was developed (Fischer, List, Koh, Imberger, & Brooks, 1979; Seo & Cheong, 1998) and generally accepted:

(1) where K = longitudinal dispersion coefficient; A = cross-sectional area; B = channel width; h = local flow depth; u’ = deviation of local depth mean flow velocity from cross-sectional mean; y = coordinate in the lateral direction; and εt = local (depth averaged) transverse mixing coefficient. An alternative approach utilises field tracer measurements and applies the method of moments. It is also well documented in the literature (Guymer, 1999; Rowinski, Piotrowski, & Napiorkowski, 2005; Rutherford, 1994) and defines K as
(2) where Uc = mean velocity, x1 and x2 denotes upstream and downstream measurement sites, = centroid travel time, σt2(x) = temporal variance,

However, owing to the requirement for detailed transverse profiles of both velocity and cross-sectional geometry, equation (1) is rather difficult to use. Furthermore, equation (2), called the method of moments (Wallis & Manson, 2004), requires measurements of concentration distributions and can be subject to serious errors due to the difficulty of evaluating the variances of the distributions caused by elongated and/or poorly defined tails. As a result, extensive studies have been made based on experimental and field data for predicting the dispersion coefficient (Deng, Singh, & Bengtsson, 2001; Jobson, 1997; Seo & Cheong, 1998; Wallis & Manson, 2004).

For example, employing 59 hydraulic and geometric data sets measured in 26 rivers in the United States, Seo and Cheong (1998) used dimensional analysis and applied the one-step Huber method, a nonlinear multi-regression method, to derive the following equation:

(3) in which u* = shear velocity. This technique uses the easily measureable hydraulic variables of B, H and U, together with a frequently used parameter, extremely difficult to accurately quantify in field applications, u*, to estimate the dimensionless dispersion coefficient K from equation (3). Another empirical equation developed by Deng et al. (2001) is a more theoretically based approximation of equation (1), which not only includes the conventional parameters of (B/H) and (U/u*) but also the effects of the transverse mixing εt0, as follows:
(4) where


Complete Chapter List

Search this Book:
Table of Contents
Alfonso Araque Almendros
Ana B. Porto Pazos, Alejandro Pazos Sierra, Washington Buño Buceta
Chapter 1
Eduardo Malmierca, Nazareth P. Castellanos, Valeri A. Makarov, Angel Nuñez
It is well know the temporal structure of spike discharges is crucial to elicit different types of neuronal plasticity. Also, precise and... Sample PDF
Corticofugal Modulation of Tactile Responses of Neurons in the Spinal Trigeminal Nucleus: A Wavelet Coherence Study
Chapter 2
Didier Le Ray, Morgane Le Bon-Jego, Daniel Cattaert
Computational neuroscience has a lot to gain from invertebrate research. In this chapter focusing on the sensory-motor network that controls leg... Sample PDF
Neural Mechanisms of Leg Motor Control in Crayfish: Insights for Neurobiologically-Inspired Autonomous Systems
Chapter 3
Oscar Herreras, Julia Makarova, José Manuel Ibarz
Neurons send trains of action potentials to communicate each other. Different messages are issued according to varying inputs, but they can also mix... Sample PDF
Forward Dendritic Spikes: A Mechanism for Parallel Processing in Dendritic Subunits and Shifting Output Codes
Chapter 4
Gheorghe Paun, Mario J. Perez-Jimenez
This chapter is a quick survey of spiking neural P systems, a branch of membrane computing which was recently introduced with motivation from neural... Sample PDF
Spiking Neural P Systems: An Overview
Chapter 5
Juan Ramón Rabuñal Dopico, Javier Pereira Loureiro, Mónica Miguélez Rico
In this chapter, we state an evolution of the Recurrent ANN (RANN) to enforce the persistence of activations within the neurons to create activation... Sample PDF
Simulation of the Action Potential in the Neuron's Membrane in Artificial Neural Networks
Chapter 6
Ana B. Porto Pazos, Alberto Alvarellos González, Alejandro Pazos Sierra
The Artificial NeuroGlial Networks, which try to imitate the neuroglial brain networks, appeared in order to process the information by means of... Sample PDF
Recent Methodology in Connectionist Systems
Chapter 7
José A. Fernández-León, Gerardo G. Acosta, Miguel A. Mayosky, Oscar C. Ibáñez
This work is intended to give an overview of technologies, developed from an artificial intelligence standpoint, devised to face the different... Sample PDF
A Biologically Inspired Autonomous Robot Control Based on Behavioural Coordination in Evolutionary Robotics
Chapter 8
Enrique Mérida-Casermeiro, Domingo López-Rodríguez, J.M. Ortiz-de-Lazcano-Lobato
In this chapter, two important issues concerning associative memory by neural networks are studied: a new model of hebbian learning, as well as the... Sample PDF
An Approach to Artificial Concept Learning Based on Human Concept Learning by Using Artificial Neural Networks
Chapter 9
Enrique Fernández-Blanco, Julian Dorado, Nieves Pedreira
The artificial embryogeny term overlaps all the models that try to adapt cellular properties into artificial models. This chapter presents a new... Sample PDF
Artificial Cell Systems Based in Gene Expression Protein Effects
Chapter 10
Computing vs. Genetics  (pages 165-181)
José M. Barreiro, Juan Pazos
This chapter first presents the interrelations between computing and genetics, which both are based on information and, particularly... Sample PDF
Computing vs. Genetics
Chapter 11
Iara Moema Oberg Vilela
This chapter discusses guidelines and models of Mind from Cognitive Sciences in order to generate an integrated architecture for an artificial mind... Sample PDF
Artificial Mind for Virtual Characters
Chapter 12
Zhijun Yang, Felipe M.G. França
As an engine of almost all life phenomena, the motor information generated by the central nervous system (CNS) plays a critical role in the... Sample PDF
A General Rhythmic Pattern Generation Architecture for Legged Locomotion
Chapter 13
Marcos Gestal, José Manuel Vázquez Naya, Norberto Ezquerra
Traditionally, the Evolutionary Computation (EC) techniques, and more specifically the Genetic Algorithms (GAs), have proved to be efficient when... Sample PDF
Genetic Algorithms and Multimodal Search
Chapter 14
Jesús M. Miró, Alfonso Rodríguez-Patón
Synthetic biology and biomolecular computation are disciplines that fuse when it comes to designing and building information processing devices. In... Sample PDF
Biomolecular Computing Devices in Synthetic Biology
Chapter 15
Alejandro Rodríguez, Alexander Grushin, James A. Reggia
Drawing inspiration from social interactions in nature, swarm intelligence has presented a promising approach to the design of complex systems... Sample PDF
Guiding Self-Organization in Systems of Cooperative Mobile Agents
Chapter 16
Agostino Forestiero, Carlo Mastroianni, Fausto Pupo, Giandomenico Spezzano
This chapter proposes a bio-inspired approach for the construction of a self-organizing Grid information system. A dissemination protocol exploits... Sample PDF
Evaluating a Bio-Inspired Approach for the Design of a Grid Information System: The SO-Grid Portal
Chapter 17
Steven M. Corns, Daniel A. Ashlock, Kenneth Mark Bryden
This chapter presents Graph Based Evolutionary Algorithms. Graph Based Evolutionary Algorithms are a generic enhancement and diversity management... Sample PDF
Graph Based Evolutionary Algorithms
Chapter 18
Daniela Danciu
Neural networks—both natural and artificial, are characterized by two kinds of dynamics. The first one is concerned with what we would call... Sample PDF
Dynamics of Neural Networks as Nonlinear Systems with Several Equilibria
Chapter 19
Jianhua Yang, Evor L. Hines, Ian Guymer, Daciana D. Iliescu, Mark S. Leeson, Gregory P. King, XuQuin Li
In this chapter a novel method, the Genetic Neural Mathematical Method (GNMM), for the prediction of longitudinal dispersion coefficient is... Sample PDF
A Genetic Algorithm-Artificial Neural Network Method for the Prediction of Longitudinal Dispersion Coefficient in Rivers
Chapter 20
Malcolm J. Beynon, Kirsty Park
This chapter employs the fuzzy decision tree classification technique in a series of biological based application problems. With its employment in a... Sample PDF
The Exposition of Fuzzy Decision Trees and Their Application in Biology
About the Contributors