Intelligent Classification and Ranking Analyses Using CARBS: Bank Rating Applications

Intelligent Classification and Ranking Analyses Using CARBS: Bank Rating Applications

Malcolm J. Beynon (Cardiff University, UK)
DOI: 10.4018/978-1-59904-982-3.ch014
OnDemand PDF Download:
$37.50

Abstract

This chapter demonstrates intelligent data analysis, within the environment of uncertain reasoning, using the recently introduced CaRBS technique that has its mathematical rudiments in Dempster-Shafer theory. A series of classification and ranking analyses are undertaken on a bank rating application, looking at Moody’s bank financial strength rating (BFSR). The results presented involve the association of each bank to being low or high BFSR, with emphasis is on the graphical exposition of the results including the use of a series of simplex plots. Throughout the analysis there is discussion on how the present of ignorance in the results should be handled, whether it should be excluded (belief) or included (plausibility) in the evidence supporting the classification or ranking of the banks.
Chapter Preview
Top

Introduction

One direction of intelligent data analysis is within the environment that facilitates uncertain reasoning, which by its definition acknowledges the often imperfection of the considered data (Chen, 2001). Amongst the general methodologies associated with uncertain reasoning, is, Dempster-Shafer Theory (DST), introduced in Dempster (1967) and Shafer (1976). Indeed, an alternative term for DST, regularly employed, is evidential reasoning, which further epitomises the computational intelligence domain worked in (see for example, Srivastava and Liu, 2003; Smets, 1991).

The reasoning associated with DST has been contentiously argued as a generalisation of Bayesian probability calculus (Shafer and Srivastava, 1990), in contrast, Cobb and Shenoy (2003) suggest they have ‘roughly’ the same expressive power. Specific techniques that are based around DST include, in multi-criteria decision making DS/AHP (Beynon, 2002) and belief decision trees (Vannoorenberghe, 2004). Pertinent to this chapter’s analysis, inherent with DST based analyses is their close association with the ability to undertake such analysis in the presence of ignorance (Safranek et al., 1990).

A nascent DST based technique for object classification and ranking is CaRBS, which has the full title Classification and Ranking Belief Simplex, introduced in Beynon (2005a). It facilitates this analysis by constructing bodies of evidence (DST terminology), from characteristics describing the objects, which are then combined to offer the evidence used to classify or rank them. The CaRBS technique offers a visual representation of the contribution of characteristics to the classification and ranking of objects using simplex plots, including the concomitant levels of ambiguity and ignorance (Beynon, 2005b). While only recently introduced, it has been applied in the areas of; education (Jones and Beynon, 2007), finance (Beynon, 2005b) and medicine (Jones et al., 2006).

In this chapter, the two directions of analysis offered by the CaRBS technique, namely classification and ranking, are exposited. In the case of object classification, the objects are known to be classed to a given hypothesis or its complement. It follows, a quantifying objective function is described which places emphasis on the minimising of ambiguity in the objects’ classifications, but not the inherent ignorance associated with their individual classifications (Beynon, 2005b). In the case of the ranking of objects across the domain of the potential classifications, based on the objects’ characteristic values describing them, this is between the extremes of a given hypothesis and its complement. How the inherent ignorance is included depends on whether more formulaic belief or plausibility measures are employed (Beynon and Kitchener, 2005).

A sample bank rating problem is analysed using the CaRBS technique, with classification and ranking analyses performed on the associated data set. The relative simplicity of the CaRBS technique and visual presentation of the findings allows the reader the opportunity to succinctly view a form of DST based data analysis. This analysis includes an elucidation of the notions of ambiguity and ignorance in object classification, and belief or plausibility based ranking of objects. Moreover, the analysis, using CaRBS, is encompassing of the presence of ignorance in its facilitation of intelligent data analysis.

It is intended for this chapter to offer the reader a benchmark outline in the ability to intelligently analyse data, through classification and/or ranking, in an environment based on uncertain reasoning.

Complete Chapter List

Search this Book:
Reset
Editorial Advisory Board
Table of Contents
Preface
Hsiao-Fan Wang
Acknowledgment
Hsiao-Fan Wang
Chapter 1
Martin Spott, Detlef Nauck
This chapter introduces a new way of using soft constraints for selecting data analysis methods that match certain user requirements. It presents a... Sample PDF
Automatic Intelligent Data Analysis
$37.50
Chapter 2
Hung T. Nguyen, Vladik Kreinovich, Gang Xiang
It is well known that in decision making under uncertainty, while we are guided by a general (and abstract) theory of probability and of statistical... Sample PDF
Random Fuzzy Sets: Theory & Applications
$37.50
Chapter 3
Gráinne Kerr, Heather Ruskin, Martin Crane
Microarray technology1 provides an opportunity to monitor mRNA levels of expression of thousands of genes simultaneously in a single experiment. The... Sample PDF
Pattern Discovery in Gene Expression Data
$37.50
Chapter 4
Erica Craig, Falk Huettmann
The use of machine-learning algorithms capable of rapidly completing intensive computations may be an answer to processing the sheer volumes of... Sample PDF
Using "Blackbox" Algorithms Such AS TreeNET and Random Forests for Data-Ming and for Finding Meaningful Patterns, Relationships and Outliers in Complex Ecological Data: An Overview, an Example Using G
$37.50
Chapter 5
Eulalia Szmidt, Marta Kukier
We present a new method of classification of imbalanced classes. The crucial point of the method lies in applying Atanassov’s intuitionistic fuzzy... Sample PDF
A New Approach to Classification of Imbalanced Classes via Atanassov's Intuitionistic Fuzzy Sets
$37.50
Chapter 6
Arun Kulkarni, Sara McCaslin
This chapter introduces fuzzy neural network models as means for knowledge discovery from databases. It describes architectures and learning... Sample PDF
Fuzzy Neural Network Models for Knowledge Discovery
$37.50
Chapter 7
Ivan Bruha
This chapter discusses the incorporation of genetic algorithms into machine learning. It does not present the principles of genetic algorithms... Sample PDF
Genetic Learning: Initialization and Representation Issues
$37.50
Chapter 8
Evolutionary Computing  (pages 131-142)
Thomas E. Potok, Xiaohui Cui, Yu Jiao
The rate at which information overwhelms humans is significantly more than the rate at which humans have learned to process, analyze, and leverage... Sample PDF
Evolutionary Computing
$37.50
Chapter 9
M. C. Bartholomew-Biggs, Z. Ulanowski, S. Zakovic
We discuss some experience of solving an inverse light scattering problem for single, spherical, homogeneous particles using least squares global... Sample PDF
Particle Identification Using Light Scattering: A Global Optimization Problem
$37.50
Chapter 10
Dominic Savio Lee
This chapter describes algorithms that use Markov chains for generating exact sample values from complex distributions, and discusses their use in... Sample PDF
Exact Markov Chain Monte Carlo Algorithms and Their Applications in Probabilistic Data Analysis and Inference
$37.50
Chapter 11
J. P. Ganjigatti, Dilip Kumar Pratihar
In this chapter, an attempt has been made to design suitable knowledge bases (KBs) for carrying out forward and reverse mappings of a Tungsten inert... Sample PDF
Design and Development of Knowledge Bases for Forward and Reverse Mappings of TIG Welding Process
$37.50
Chapter 12
Malcolm J. Beynon
This chapter considers the role of fuzzy decision trees as a tool for intelligent data analysis in domestic travel research. It demonstrates the... Sample PDF
A Fuzzy Decision Tree Analysis of Traffic Fatalities in the US
$37.50
Chapter 13
Dymitr Ruta, Christoph Adl, Detlef Nauck
In the telecom industry, high installation and marketing costs make it six to 10 times more expensive to acquire a new customer than it is to retain... Sample PDF
New Churn Prediction Strategies in the Telecom Industry
$37.50
Chapter 14
Malcolm J. Beynon
This chapter demonstrates intelligent data analysis, within the environment of uncertain reasoning, using the recently introduced CaRBS technique... Sample PDF
Intelligent Classification and Ranking Analyses Using CARBS: Bank Rating Applications
$37.50
Chapter 15
Fei-Chen Hsu, Hsiao-Fan Wang
In this chapter, we used Cumulative Prospect Theory to propose an individual risk management process (IRM) including a risk analysis stage and a... Sample PDF
Analysis of Individual Risk Attitude for Risk Management Based on Cumulative Prospect Theory
$37.50
Chapter 16
Francesco Giordano, Michele La Rocca, Cira Perna
This chapter introduces the use of the bootstrap in a nonlinear, nonparametric regression framework with dependent errors. The aim is to construct... Sample PDF
Neural Networks and Bootstrap Methods for Regression Models with Dependent Errors
$37.50
Chapter 17
Lean Yu, Shouyang Wang, Kin Keung Lai
Financial crisis is a kind of typical rare event, but it is harmful to economic sustainable development if occurs. In this chapter, a... Sample PDF
Financial Crisis Modeling and Prediction with a Hilbert-EMD-Based SVM Approachs
$37.50
Chapter 18
Chun-Jung Huang, Hsiao-Fan Wang, Shouyang Wang
One of the key problems in supervised learning is due to the insufficient size of the training data set. The natural way for an intelligent learning... Sample PDF
Virtual Sampling with Data Construction Analysis
$37.50
About the Contributors