Interference Microscopy for Cellular Studies

Interference Microscopy for Cellular Studies

Alexey R. Brazhe (Technical University of Denmark, Denmark and Moscow State University, Russia), Nadezda A. Brazhe (Technical University of Denmark, Denmark and Moscow State University, Russia), Alexey N. Pavlov (Saratov State University, Russia) and Georgy V. Maksimov (Moscow State University, Russia)
Copyright: © 2009 |Pages: 17
DOI: 10.4018/978-1-60566-076-9.ch037
OnDemand PDF Download:


This chapter describes the application of interference microscopy and double-wavelet analysis to noninvasive study of cell structure and function. We present different techniques of phase and interference microscopy and discuss how variations in the intrinsic optical properties of a cell can be related to the intracellular processes. Particular emphasis is given to the newly developed phase modulation laser interference microscope. We show how this setup, combined with wavelet analysis of the obtained data series, can be applied to live cell imaging to investigate the rhythmic intracellular processes and their mutual interactions. We hope that the discussion will contribute to the understanding and learning of new methods for non-invasive investigation of intracellular processes.
Chapter Preview


There is a significant and rapidly growing interest in the development of new experimental techniques that will allow us to perform non-invasive studies on live cells with a spatial and temporal resolution that is sufficient to reveal the motion of intracellular structures and to simultaneously follow cellular processes that take place in different compartments and on different time scales.

Most cells are practically transparent to light and limited information is directly available from conventional amplitude microscopy. To examine processes within the cell various forms of staining have to be used. However, such dye-based approaches only allow the investigation of a few processes at a time and, moreover, the staining affects normal cellular processes.

Local refractive index, an intrinsic optical property of biological objects, provides additional valuable information. Although a cell often doesn’t absorb light efficiently, various cellular structures may have different values of the refractive index and therefore retard light beams that propagate through the object differently. The idea of exploiting the associated phase shifts underlies a number of different microscopy setups. A main advantage of the phase imaging technique is that no staining is required to visualize the transparent structures in the cell. Moreover, phase imaging allows the spatial resolution to exceed the Rayleigh barrier which is impossible in amplitude microscopy. Besides techniques for imaging it is also essential to develop non-invasive techniques that can be used to examine the dynamics of the cellular processes and their mutual interactions.

The possibility of using the intrinsic optical properties as a non-invasive probe of neuronal properties was first considered by Hill and Keynes (Hill and Keynes, 1968). They observed changes in the light scattering intensity of a nerve fibre during electrical activity. Cohen (Cohen, 1969) found that the intrinsic optical properties depend on the ion currents through the plasma membrane, and Stepnoski (Stepnoski et al., 1991) observed that the intensity of light scattered by neurons depends on their membrane potential. By now it is clear that the intrinsic optical properties of a cell also depend on the organization of the cytoskeleton and on the location of the various organelles (Haller, 2001). Cells exhibit dynamic processes over a broad range of different time scales and across a variety of cellular compartments. Moreover, these processes interact with one another to produce mutual modulation. It appears worthwhile to examine the possibility of time-resolved phase measurement for non-invasive studies of cellular processes. Such studies must, of course, be accompanied by a development of new mathematical methods capable of unravelling the complexity of the interacting processes.

The following section presents a general background for our discussion, describing a number of different approaches to phase imaging and providing an introduction to the use of wavelet analysis of rhythmic phenomena in non-stationary time series. This is followed by a section on cell visualization where we examine several cell types in order to clarify the kinds of information that one can obtain in such studies. Finally, we present the results of a time-resolved interference microscopy study of several cell types.

Key Terms in this Chapter

Phase Microscopy: A collective name for microscopy techniques aimed at visualization of changes in the phase of transmitted light introduced by a specimen, thus allowing to contrast optically transparent structures.

Amplitude Modulation: Variations in the amplitude of the studied rhythms introduced by external influence, e.g. another rhythmical process.

Interference Microscopy: One of the subtypes of phase microscopy, based on interferometers. In general, allows quantitative measurement of the refractive index.

Phase-Modulation Interference Microscopy (PM-LIM): Interference microscopy in which the optical path length of the reference beam is harmonically modulated, which makes independent measurements of the refractive index in each point of the sample feasible.

Intrinsic Optical Properties: A sum of various optical properties originating from structural and dynamical features of the specimen, i.e. refractive index (RI), light scattering and absorbance, autofluorescence.

Wavelet Analysis: Computational technique of data series analysis based on wavelet transform. Wavelets are time-localised oscillating functions. Wavelet transform is a convolution of the signal with the dilated and translated copies of the wavelet function. It resolves spectral properties of the signal in time domain.

Phase Image: A result of interference microscopy. Each point of the phase image represents optical path difference or phase shift in a corresponding point of the sample.

Frequency Modulation: Variations in the instantaneous frequency of a studied rhythm introduced by external influence.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Ralf Herwig
Andriani Daskalaki
Andriani Daskalaki
Chapter 1
Peter Ghazal
An increasing number of biological experiments and more recently clinical based studies are being conducted using large-scale genomic, proteomic and... Sample PDF
Pathway Biology Approach to Medicine
Chapter 2
Peter Wellstead, Sree Sreenath, Kwang-Hyun Cho
In this chapter the authors describe systems and control theory concepts for systems biology and the corresponding implications for medicine. The... Sample PDF
Systems and Control Theory for Medical Systems Biology
Chapter 3
S. Nikolov
In this chapter we investigate how the inclusion of time delay alters the dynamic properties of (a) delayed protein cross talk model, (b) time delay... Sample PDF
Mathematical Description of Time Delays in Pathways Cross Talk
Chapter 4
Elisabeth Maschke-Dutz
In this chapter basic mathematical methods for the deterministic kinetic modeling of biochemical systems are described. Mathematical analysis... Sample PDF
Deterministic Modeling in Medicine
Chapter 5
Andrew Kuznetsov
Biologists have used a reductionist approach to investigate the essence of life. In the last years, scientific disciplines have merged with the aim... Sample PDF
Synthetic Biology as a Proof of Systems Biology
Chapter 6
Tuan D. Pham
Computational models have been playing a significant role for the computer-based analysis of biological and biomedical data. Given the recent... Sample PDF
Computational Models for the Analysis of Modern Biological Data
Chapter 7
Vanathi Gopalakrishnan
This chapter provides a perspective on 3 important collaborative areas in systems biology research. These areas represent biological problems of... Sample PDF
Computer Aided Knowledge Discovery in Biomedicine
Chapter 8
Thomas Meinel
The function of proteins is a main subject of research in systems biology. Inference of function is now, more than ever, required by the upcoming of... Sample PDF
Function and Homology of Proteins Similar in Sequence: Phylogenetic Profiling
Chapter 9
Nikolaos G. Sgourakis, Pantelis G. Bagos, Stavros J. Hamodrakas
GPCRs comprise a wide and diverse class of eukaryotic transmembrane proteins with well-established pharmacological significance. As a consequence of... Sample PDF
Computational Methods for the Prediction of GPCRs Coupling Selectivity
Chapter 10
Pantelis G. Bagos, Stavros J. Hamodrakas
ß-barrel outer membrane proteins constitute the second and less well-studied class of transmembrane proteins. They are present exclusively in the... Sample PDF
Bacterial ß-Barrel Outer Membrane Proteins: A Common Structural Theme Implicated in a Wide Variety of Functional Roles
Chapter 11
L.K. Flack
Clustering methods are used to place items in natural patterns or convenient groups. They can be used to place genes into clusters to have similar... Sample PDF
Clustering Methods for Gene-Expression Data
Chapter 12
George Sakellaropoulos, Antonis Daskalakis, George Nikiforidis, Christos Argyropoulos
The presentation and interpretation of microarray-based genome-wide gene expression profiles as complex biological entities are considered to be... Sample PDF
Uncovering Fine Structure in Gene Expression Profile by Maximum Entropy Modeling of cDNA Microarray Images and Kernel Density Methods
Chapter 13
Wasco Wruck
This chapter describes the application of the BeadArrayTM technology for gene expression profiling. It introduces the BeadArrayTM technology, shows... Sample PDF
Gene Expression Profiling with the BeadArrayTM Platform
Chapter 14
Djork-Arné Clevert, Axel Rasche
Readers shall find a quick introduction with recommendations into the preprocessing of Affymetrix GeneChip® microarrays. In the rapidly growing... Sample PDF
The Affymetrix GeneChip® Microarray Platform
Chapter 15
Jacek Majewski
Eukaryotic genes have the ability to produce several distinct products from a single genomic locus. Recent developments in microarray technology... Sample PDF
Alternative Isoform Detection Using Exon Arrays
Chapter 16
Prerak Desai
The use of systems biology to study complex biological questions is gaining ground due to the ever-increasing amount of genetic tools and genome... Sample PDF
Gene Expression in Microbial Systems for Growth and Metabolism
Chapter 17
Heike Stier
Alternative splicing is an important part of the regular process of gene expression. It controls time and tissue dependent expression of specific... Sample PDF
Alternative Splicing and Disease
Chapter 18
Axel Kowald
Aging is a complex biological phenomenon that practically affects all multicellular eukaryotes. It is manifested by an ever increasing mortality... Sample PDF
Mathematical Modeling of the Aging Process
Chapter 19
Evgenia Makrantonaki
This chapter introduces an in vitro model as a means of studying human hormonal aging. For this purpose, human sebaceous gland cells were maintained... Sample PDF
The Sebaceous Gland: A Model of Hormonal Aging
Chapter 20
R. Seigneuric, N.A.W. van Riel, M.H.W. Starmans, A. van Erk
Complex diseases such as cancer have multiple origins and are therefore difficult to understand and cure. Highly parallel technologies such as DNA... Sample PDF
Systems Biology Applied to Cancer Research
Chapter 21
Matej Orešic, Antonio Vidal-Puig
In this chapter the authors report on their experience with the analysis and modeling of data obtained from studies of animal models related to... Sample PDF
Systems Biology Strategies in Studies of Energy Homeostasis In Vivo
Chapter 22
Axel Rasche
We acquired new computational and experimental prospects to seek insight and cure for millions of afflicted persons with an ancient malady. Type 2... Sample PDF
Approaching Type 2 Diabetes Mellitus by Systems Biology
Chapter 23
Alia Benkahla, Lamia Guizani-Tabbane, Ines Abdeljaoued-Tej, Slimane Ben Miled, Koussay Dellagi
This chapter reports a variety of molecular biology informatics and mathematical methods that model the cell response to pathogens. The authors... Sample PDF
Systems Biology and Infectious Diseases
Chapter 24
Daniela Albrecht, Reinhard Guthke
This chapter describes a holistic approach to understand the molecular biology and infection process of human-pathogenic fungi. It comprises the... Sample PDF
Systems Biology of Human-Pathogenic Fungi
Chapter 25
Jessica Ahmed
Secretases are aspartic proteases, which specifically trim important, medically relevant targets such as the amyloid-precursor protein (APP) or the... Sample PDF
Development of Specific Gamma Secretase Inhibitors
Chapter 26
Paul Wrede
Peptides fulfill many tasks in controlling and regulating cellular functions and are key molecules in systems biology. There is a great demand in... Sample PDF
In Machina Systems for the Rational De Novo Peptide Design
Chapter 27
Ferda Mavituna, Raul Munoz-Hernandez, Ana Katerine de Carvalho Lima Lobato
This chapter summarizes the fundamentals of metabolic flux balancing as a computational tool of metabolic engineering and systems biology. It also... Sample PDF
Applications of Metabolic Flux Balancing in Medicine
Chapter 28
Roberta Alfieri, Luciano Milanesi
This chapter aims to describe data integration and data mining techniques in the context of systems biology studies. It argues that the different... Sample PDF
Multi-Level Data Integration and Data Mining in Systems Biology
Chapter 29
Hendrik Hache
In this chapter, different methods and applications for reverse engineering of gene regulatory networks that have been developed in recent years are... Sample PDF
Methods for Reverse Engineering of Gene Regulatory Networks
Chapter 30
Alok Mishra
This chapter introduces the techniques that have been used to identify the genetic regulatory modules by integrating data from various sources. Data... Sample PDF
Data Integration for Regulatory Gene Module Discovery
Chapter 31
Elizabeth Santiago-Cortés
Biological systems are composed of multiple interacting elements; in particular, genetic regulatory networks are formed by genes and their... Sample PDF
Discrete Networks as a Suitable Approach for the Analysis of Genetic Regulation
Chapter 32
A. Maffezzoli
In this chapter, authors review main methods, approaches, and models for the analysis of neuronal network data. In particular, the analysis concerns... Sample PDF
Investigating the Collective Behavior of Neural Networks: A Review of Signal Processing Approaches
Chapter 33
Paolo Vicini
This chapter describes the System for Population Kinetics (SPK), a novel Web service for performing population kinetic analysis. Population kinetic... Sample PDF
The System for Population Kinetics: Open Source Software for Population Analysis
Chapter 34
Julia Adolphs
This chapter introduces the theory of optical spectra and excitation energy transfer of light harvesting complexes in photosynthesis. The light... Sample PDF
Photosynthesis: How Proteins Control Excitation Energy Transfer
Chapter 35
Michael R. Hamblin
Photodynamic therapy (PDT) is a rapidly advancing treatment for multiple diseases. PDT involves the administration of a nontoxic drug or dye known... Sample PDF
Photodynamic Therapy: A Systems Biology Approach
Chapter 36
Andriani Daskalaki
Photodynamic Therapy (PDT) involves administration of a photosensitizer (PS) either systemically or locally, followed by illumination of the lesion... Sample PDF
Modeling of Porphyrin Metabolism with PyBioS
Chapter 37
Alexey R. Brazhe, Nadezda A. Brazhe, Alexey N. Pavlov, Georgy V. Maksimov
This chapter describes the application of interference microscopy and double-wavelet analysis to noninvasive study of cell structure and function.... Sample PDF
Interference Microscopy for Cellular Studies
Chapter 38
Cathrin Dressler, Olaf Minet, Urszula Zabarylo, Jürgen Beuthan
This chapter deals with the mitochondrias’ stress response to heat, which is the central agent of thermotherapy. Thermotherapies function by... Sample PDF
Fluorescence Imaging of Mitochondrial Long-Term Depolarization in Cancer Cells Exposed to Heat-Stress
Chapter 39
Athina Theodosiou, Charalampos Moschopoulos, Marc Baumann, Sophia Kossida
In previous years, scientists have begun understanding the significance of proteins and protein interactions. The direct connection of those with... Sample PDF
Protein Interactions and Diseases
Chapter 40
Bernard de Bono
From a genetic perspective, disease can be interpreted in terms of a variation in molecular sequence or expression (dose) that impairs normal... Sample PDF
The Breadth and Depth of BioMedical Molecular Networks: The Reactome Perspective
Chapter 41
Jorge Numata
Thermodynamics is one of the best established notions in science. Some recent work in biomolecular modeling has sacrificed its rigor in favor of... Sample PDF
Entropy and Thermodynamics in Biomolecular Simulation
Chapter 42
Isabel Reinecke, Peter Deuflhard
In this chapter some model development concepts can be used for the mathematical modeling in physiology as well as a graph theoretical approach for... Sample PDF
Model Development and Decomposition in Physiology
Chapter 43
Mohamed Derouich
Throughout the world, seasonal outbreaks of influenza affect millions of people, killing about 500,000 individuals every year. Human influenza... Sample PDF
A Pandemic Avian Influenza Mathematical Model
Chapter 44
Mohamed Derouich
Dengue fever is a re-emergent disease affecting more than 100 countries. Its incidence rate has increased fourfold since 1970 with nearly half the... Sample PDF
Dengue Fever: A Mathematical Model with Immunization Program
Chapter 45
Ross Foley
The field of histopathology has encountered a key transition point with the progressive move towards use of digital slides and automated image... Sample PDF
Automated Image Analysis Approaches in Histopathology
About the Contributors