Interpreting Health and Wellness Information

Interpreting Health and Wellness Information

Lena Mamykina (Georgia Institute of Technology, USA) and Elizabeth Mynatt (Georgia Institute of Technology, USA)
Copyright: © 2009 |Pages: 17
DOI: 10.4018/978-1-60566-298-5.ch005
OnDemand PDF Download:


In the last decade, novel sensing technologies enabled development of applications that help individuals with chronic diseases monitor their health and activities. These applications can generate large volumes of data that need to be processed and analyzed. At the same time, many of these applications are designed for non-professional use by individuals of advanced age and low educational level. These users may find the data collected by the applications challenging and overwhelming, rather than helpful, and may require additional assistance in interpreting it. In this chapter, we discuss two different approaches to designing computing applications that not only collect the relevant health and wellness data but also find creative ways to engage individuals in the analysis and assist with interpretation of the data. These approaches include visualization of data using simple real world imagery and metaphors, and social scaffolding mechanisms that help novices learn by observing and imitating experts. We present example applications that utilize both of these approaches and discuss their relative strengths and limitations.
Chapter Preview


Rapid developments in the sensing technologies lead to the introduction of sensors and object auto-identification in new areas of human life and activities. One such area that became a topic of extensive research is healthcare. In the healthcare domain, auto-identification takes a form of health and wellness monitoring and applies not only to objects, but also, and even more commonly, to activities, and to bio-indicators of individuals’ health. For example, new sensing techniques attempt to determine individuals’ diets by audio recording chewing sounds (Amft et al, 2006); individuals’ interactions with RFID-tagged objects is used to infer the activities they engage in (Intille, 2003), and various sensors are designed to monitor new and traditional vital signs, such as heart rate, blood glucose, or gate.

Oftentimes, introduction of these new sensing techniques can lead to an exponential growth of the volumes of data available for interpreting. At the same time, many of the monitoring applications that utilize such sensors are designed in context of chronic disease management and are meant to be used by lay individuals and their non-clinical caregivers. As a result, the attention of researchers is starting to shift from sensing technologies to ways to incorporate these data into individuals’ sensemaking and decision-making regarding their health and disease. After all, the richness of the captured data is of little value unless it can inform decisions and empower choices.

In this chapter we discuss two distinct approaches to enhancing the utility of auto-identification data for lay individuals, discuss recent research projects that utilize these approaches and compare and contrast their advantages and disadvantages. The two approaches we focus on are: 1) introduction of novel data presentation techniques that facilitate comprehension and analysis of the captured data and 2) incorporation of social scaffolding that helps individuals acquire skills necessary for data analysis by learning from experts.

We will begin our discussion by introducing three applications that utilize novel visualization techniques to represent health-related information captured by sensors. These applications include Digital Family Portrait (later referred to as DFP, Mynatt et at, 2000) designed by the Graphics, Visualization and Usability Center of the Georgia Institute of Technology, Fish ‘n’ Steps (Lin et at, 2006) designed by Siemens Corporate Research, Inc. and UbiFit Garden (Consolvo et at, 2007) designed by Intel Research, Inc. All of these applications use sensors to collect health or wellness data and rely on a particular approach to visualizing the resulting data set, namely they use metaphors of real world events or objects to assist in comprehension.

An alternative approach to facilitating analysis of health data captured by ubiquitous computing applications is by providing social scaffolding mechanisms. One example of such applications is Mobile Access to Health Information (MAHI, Mamykina et al, 2006) designed and developed by the Georgia Institute of Technology and Siemens Corporate Research, Inc. In contrast to DFP, Fish’n’Steps, or UbiFit Garden, MAHI uses relatively simple data presentation techniques. However, it includes a number of features that allow diabetes educators help individuals with diabetes acquire and develop skills necessary for reflective analysis of the captured data.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Olaf Diegel
Judith Symonds, John Ayoade, David Parry
Chapter 1
Chin Boo Soon
This chapter describes the history and development of Radio Frequency Identification (RFID). Key information on RFID such as the ratification of the... Sample PDF
Radio Frequency Identification History and Development
Chapter 2
John Garofalakis, Christos Mettouris
The continuous evolution of wireless technologies has made them ideal for use in many different applications, including user positioning. Until now... Sample PDF
Using Bluetooth for Indoor User Positioning and Informing
Chapter 3
John Ayoade, Judith Symonds
Standards organisations such as EPC Global work to provide global compatibility between RFID readers and tags (EPCGlobal, 2007). This is essential... Sample PDF
RFID for Identification of Stolen/Lost Items
Chapter 4
Filippo Gandino, Erwing Ricardo Sanchez, Bartolomeo Montrucchio, Maurizio Rebaudengo
This chapter deals with the use of RFID technology for improving management and security of agri-food products. In order to protect health and to... Sample PDF
RFID Technology for Agri-Food Tracability Management
Chapter 5
Lena Mamykina, Elizabeth Mynatt
In the last decade, novel sensing technologies enabled development of applications that help individuals with chronic diseases monitor their health... Sample PDF
Interpreting Health and Wellness Information
Chapter 6
Bryan Houliston
Hospitals are traditionally slow to adopt new information systems (IS). However, health care funders and regulators are demanding greater use of IS... Sample PDF
RFID in Hospitals and Factors Restricting Adoption
Chapter 7
David Parry, Judith Symonds
Radio-frequency Identification (RFID) offers a potentially flexible and low cost method of locating objects and tracking people within buildings.... Sample PDF
RFID and Assisted Living for the Elderly
Chapter 8
Ashir Ahmed, Ly-Fie Sugianto
This chapter introduces an activity-based framework for the adoption of radio frequency identification (RFID) in emergency management. The framework... Sample PDF
RFID in Emergency Management
Chapter 9
Bin Shen, Yu-Jin Zhang
This chapter is concerned with online object tracking, which aims to locate a given object in each of the consecutive frames. Many algorithms have... Sample PDF
Subsequence-Wise Approach for Online Tracking
Chapter 10
John Ayoade
The aim of Fixed-Mobile Convergence (FMC) is to provide both fixed-line and mobile telephony services to users through the same handset which could... Sample PDF
From Fixed to Mobile Convergence
Chapter 11
Sarita Pais, Judith Symonds
RFID tags can store more data and can update this data through local processing. This is in contrast to the EPC global standard of data-on-network.... Sample PDF
Handling RFID Data Using a Data-on-Tag Approach
Chapter 12
Maryam Purvis, Toktam Ebadi, Bastin Tony Roy Savarimuthu
The objective of this research is to describe a mechanism to provide an improved library management system using RFID and agent technologies. One of... Sample PDF
An Agent-Based Library Management System Using RFID Technology
Chapter 13
Tommaso Di Noia, Eugenio Di Sciascio, Francesco Maria Donini, Michele Ruta, Floriano Scioscia, Eufemia Tinelli
We propose a novel object discovery framework integrating the application layer of Bluetooth and RFID standards. The approach is motivated and... Sample PDF
Semantic-Based Bluetooth-RFID Interaction for Advanced Resource Discovery in Pervasive Contexts
Chapter 14
Indranil Bose, Chun Wai Lam
Radio frequency identification (RFID) has generated vast amounts of interest in the supply chain, logistics, and the manufacturing area. RFID can be... Sample PDF
Facing the Challenges of RFID Data Management
Chapter 15
Masoud Mohammadian, Ric Jentzsch
The cost of health care continues to be a world wide issue. Research continues into ways and how the utilization of evolving technologies can be... Sample PDF
A Mobile Computing Framework for Passive RFID Detection System in Healthcare
Chapter 16
Masoud Mohammadian, Ric Jentzsch
When dealing with human lives, the need to utilize and apply the latest technology to help in saving and maintaining patients’ lives is quite... Sample PDF
Intelligent Agents Framework for RFID Hospitals
Chapter 17
David Wyld
We are in the midst of what may become one of the true technological transformations of our time. RFID (radio frequency identification) is by no... Sample PDF
Radio Frequency Identification (RFID) Technology
About the Contributors