Joint Beamforming and Space-Time Coding for MIMO Channels

Joint Beamforming and Space-Time Coding for MIMO Channels

Biljana Badic (Swansea University, UK) and Jinho Choi (Swansea University, UK)
DOI: 10.4018/978-1-59904-988-5.ch013
OnDemand PDF Download:


This chapter introduces joint beamforming (or precoding) and space-time coding for multiple input multiple output (MIMO) channels. First, we explain key ideas of beamforming and space- time coding and then we discuss the joint design of beamformer and space-time codes and its benefits. Beamforming techniques play a key role in smart antenna systems as they can provide various features, including spatially selective transmissions to increase the capacity and coverage increase. STC techniques can offer both coding gain and diversity gain over MIMO channels. Thus, joint beamforming and STC is a more practical approach to exploit both spatial correlation and diversity gain of MIMO channels. We believe that joint design will be actively employed in future standards for wireless communications.
Chapter Preview


The last decade has seen an increased interest in the study of smart antenna and multiple input multiple output (MIMO) channels. In particular, after Foschini (1998) and Telatar (1999) showed that multiple antenna systems are capable of providing large capacity increase in wireless transmissions, there have been an increased number of research studies for MIMO channels in various aspects, including propagations, space-time transmission schemes, and receiver design. Smart antenna systems are some of the particular examples to exploit the potential of MIMO channels. Beamforming techniques are crucial for smart antenna systems. Conventional beamforming techniques have been well developed for the signal reception to exploit diversity gain and/or suppress interfering signals (Winters, 1998). Provided that the channel state information (CSI) is known at the transmitter equipped with multiple antennas, beamforming is available for the signal transmission to provide spatial selectivity. In multiuser communications, this spatial selectivity leads to the spatial multiplexing gain and space division multiple access (SDMA).

Transmit beamforming can provide not only spatial selectivity, but also transmit diversity gain (Lo, 1999; Choi, 2002a). Transmit diversity can be achieved if multiple (independent) fading channels available by the transmitter. Generally, transmit diversity gain can be exploited by beamforming if instantaneous CSI is available at the transmitter. On the other hand, if statistical properties of CSI (e.g., the spatial correlation of MIMO channels) are only available, beamforming gain can be achieved, but not diversity gain. Thus, the CSI at the transmitter is often critical to exploit the transmit diversity gain. However, one general drawback of the methods relying on instantaneous CSI at the transmitter is feasibility and the need of feedback of CSI from the receiver to the transmitter.

Limited feedback issue becomes important for closed-loop transmit diversity including the beamforming methods relying on instantaneous CSI. In (Choi, 2002a; Love, 2003; Mukkavilli, 2003), beamforming methods are considered with limited feedback that provides partial CSI to the transmitter.

If CSI is not available at the transmitter, space-time coding (STC) can be applied. A number of STC methods have been investigated to improve the system performance (Alamouti, 1998; Tarokh, 1998; Tarokh, 1999a; Tarokh, 1999b). So called Orthogonal Space-Time Block Codes (OSTBCs) became quite popular in the context of space-time transmit diversity since they can provide a full diversity with low complexity, however mostly with the drawback of reduced data rates. It is known that the performance can be degraded if channels are spatially correlated (Bolcskei, 2000). The code designs criteria in (Alamouti, 1998) and (Tarokh, 1998) assume that transmit and receive antennas are uncorrelated and each element of the MIMO channel matrix fades independently. However, this is not necessary to be true in practice. For example, in outdoor wireless systems, the base-station (BS) antennas are placed high above the ground and close to each other. In such a scenario, the BS antennas are unobstructed and see no local scatterers leading to high correlation between the BS antennas (Salz, 1994).

Complete Chapter List

Search this Book:
Table of Contents
Jack H. Winters
Chen Sun, Jun Cheng, Takashi Ohira
Chapter 1
Constantin Siriteanu, Steven D. Blostein
This chapter unifies the principles and analyses of conventional signal processing algorithms for receive-side smart antennas, and compares their... Sample PDF
Eigencombining: A Unified Approach to Antenna Array Signal Processing
Chapter 2
Zhu Liang Yu, Meng Hwa Er, Wee Ser, Chen Huawei
In this chapter, we first review the background, basic principle and structure of adaptive beamformers. Since there are many robust adaptive... Sample PDF
Robust Adaptive Beamforming
Chapter 3
Sheng Chen
Adaptive beamforming is capable of separating user signals transmitted on the same carrier frequency, and thus provides a practical means of... Sample PDF
Adaptive Beamforming Assisted ReceiverAdaptive Beamforming
Chapter 4
Thomas Hunziker
Many common adaptive beamforming methods are based on a sample matrix inversion (SMI). The schemes can be applied in two ways. The sample covariance... Sample PDF
On the Employment of SMI Beamforming for Cochannel Interference Mitigation in Digital Radio
Chapter 5
Hideki Ochiai, Patrick Mitran, H. Vincent Poor, Vahid Tarokh
In wireless sensor networks, the sensor nodes are often randomly situated, and each node is likely to be equipped with a single antenna. If these... Sample PDF
Random Array Theory and Collaborative Beamforming
Chapter 6
W. H. Chin, C. Yuen
Space-time block coding is a way of introducing multiplexing and diversity gain in wireless systems equipped with multiple antennas. There are... Sample PDF
Advanced Space-Time Block Codes and Low Complexity Near Optimal Detection for Future Wireless Networks
Chapter 7
Xiang-Gen Xia, Genyuan Wang, Pingyi Fan
Modulated codes (MC) are error correction codes (ECC) defined on the complex field and therefore can be naturally combined with an intersymbol... Sample PDF
Space-Time Modulated Codes for MIMO Channels with Memory
Chapter 8
Javier Vía, Ignacio Santamaría, Jesús Ibáñez
This chapter analyzes the problem of blind channel estimation under Space-Time Block Coded transmissions. In particular, a new blind channel... Sample PDF
Blind Channel Estimation in Space-Time Block Coded Systems
Chapter 9
Chen Sun, Takashi Ohira, Makoto Taromaru, Nemai Chandra Karmakar, Akifumi Hirata
In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the... Sample PDF
Fast Beamforming of Compact Array Antenna
Chapter 10
Eddy Taillefer, Jun Cheng, Takashi Ohira
This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact... Sample PDF
Direction of Arrival Estimation with Compact Array Antennas: A Reactance Switching Approach
Chapter 11
Santana Burintramart, Nuri Yilmazer, Tapan K. Sarkar, Magdalena Salazar-Palma
This chapter presents a concern regarding the nature of wireless communications using multiple antennas. Multi-antenna systems are mainly developed... Sample PDF
Physics of Multi-Antenna Communication Systems
Chapter 12
MIMO Beamforming  (pages 240-263)
Qinghua Li, Xintian Eddie Lin, Jianzhong ("Charlie") Zhang
Transmit beamforming improves the performance of multiple-input multiple-output antenna system (MIMO) by exploiting channel state information (CSI)... Sample PDF
MIMO Beamforming
Chapter 13
Biljana Badic, Jinho Choi
This chapter introduces joint beamforming (or precoding) and space-time coding for multiple input multiple output (MIMO) channels. First, we explain... Sample PDF
Joint Beamforming and Space-Time Coding for MIMO Channels
Chapter 14
Zhendong Zhou, Branka Vucetic
This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically... Sample PDF
Adaptive MIMO Systems with High Spectral Efficiency
Chapter 15
Joakim Jaldén, Björn Ottersten
This chapter takes a closer look at a class of MIMO detention methods, collectively referred to as relaxation detectors. These detectors provide... Sample PDF
Detection Based on Relaxation in MIMO Systems
Chapter 16
Wolfgang Utschick, Pedro Tejera, Christian Guthy, Gerhard Bauch
This chapter discusses four different optimization problems of practical importance for transmission in point to multipoint networks with a multiple... Sample PDF
Transmission in MIMO OFDM Point to Multipoint Networks
Chapter 17
Salman Durrani, Marek E. Bialkowski
This chapter discusses the use of smart antennas in Code Division Multiple Access (CDMA) systems. First, we give a brief overview of smart antenna... Sample PDF
Smart Antennas for Code Division Multiple Access Systems
Chapter 18
Aimin Sang, Guosen Yue, Xiaodong Wang, Mohammad Madihian
In this chapter, we consider a cellular downlink packet data system employing the space-time block coded (STBC) multiple- input-multiple-output... Sample PDF
Cross-Layer Performance of Scheduling and Power Control Schemes in Space-Time Block Coded Downlink Packet Systems
Chapter 19
Yimin Zhang, Xin Li, Moeness G. Amin
This chapter introduces the concept of multi-beam antenna (MBA) in mobile ad hoc networks and the recent advances in the research relevant to this... Sample PDF
Mobile Ad Hoc Networks Exploiting Multi-Beam Antennas
Chapter 20
Toru Hashimoto, Tomoyuki Aono
The technology of generating and sharing the key as the representative application of smart antennas is introduced. This scheme is based on the... Sample PDF
Key Generation System Using Smart Antenna
Chapter 21
Nemai Chandra Karmakar
Various smart antennas developed for automatic radio frequency identification (RFID) readers are presented. The main smart antennas types of RFID... Sample PDF
Smart Antennas for Automatic Radio Frequency Identification Readers
Chapter 22
Konstanty Bialkowski, Adam Postula, Amin Abbosh, Marek Bialkowski
This chapter introduces the concept of Multiple Input Multiple Output (MIMO) wireless communication system and the necessity to use a testbed to... Sample PDF
Field Programmable Gate Array Based Testbed for Investigating Multiple Input Multiple Output Signal Transmission in Indoor Environments
Chapter 23
Masahiro Watanabe, Sadao Obana, Takashi Watanabe
Recent studies on directional media access protocols (MACs) using smart antennas for wireless ad hoc networks have shown that directional MACs... Sample PDF
Ad Hoc Networks Testbed Using a Practice Smart Antenna with IEEE802.15.4 Wireless Modules
Chapter 24
Monthippa Uthansakul, Marek E. Bialkowski
This chapter introduces the alternative approach for wideband smart antenna in which the use of tapped-delay lines and frequency filters are... Sample PDF
Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters
Chapter 25
Jun Cheng, Eddy Taillefer, Takashi Ohira
Three working modes, omni-, sector and adaptive modes, for a compact array antenna are introduced. The compact array antenna is an electronically... Sample PDF
Omni-, Sector, and Adaptive Modes of Compact Array Antenna
About the Contributors