Machine Learning in Morphological Segmentation

Machine Learning in Morphological Segmentation

O. Lezoray (Universite de Caen Basse-Normandie, France), G. Lebrun (Universite de Caen Basse-Normandie, France), C. Meurie (INRETS-LEOST, France), C. Charrier (Universite de Caen Basse-Normandie, France), A. Elmotataz (Universite de Caen Basse-Normandie, France) and M. Lecluse (Centre Hospitalier Public du Cotentin, France)
DOI: 10.4018/978-1-60566-314-2.ch021
OnDemand PDF Download:


The segmentation of microscopic images is a challenging application that can have numerous applications ranging from prognosis to diagnosis. Mathematical morphology is a very well established theory to process images. Segmentation by morphological means is based on watershed that considers an image as a topographic surface. Watershed requires input and marker image. The user can provide the latter but far more relevant results can be obtained for watershed segmentation if marker extraction relies on prior knowledge. Parameters governing marker extraction varying from image to image, machine learning approaches are of interest for robust extraction of markers. We review different strategies for extracting markers by machine learning: single classifier, multiple classifier, single classifier optimized by model selection.
Chapter Preview


Mathematical Morphology is a very well established theory to process images (Serra, 1988). The watershed is the basic tool of Mathematical Morphology for segmentation. It has proved to be a powerful tool and it is used in a large number of applications, such as, medicine, remote sensing, robotics, and multimedia (Meyer, 2001). The parameters for a watershed are marker and input images (Soille, 2004). The watershed grows the markers based on a flooding simulation process by considering the input image as a topographic surface. The problem is to produce the divide-line image on this surface (Roerdink, 2000). Each marker is associated to a color. The topography is flooded from below by letting colored water rise from the holes with its associated color, at an uniform rate across the entire image. When the rising water of distinct colors would merge, a dam is built to prevent the merging. Figure 1 illustrates such a process on a color hematology image with two different sets of markers (provided by the user or by a machine learning algorithm). The most difficult problem when using watershed is of course the definition of appropriate markers with minimal efforts (Rivest, 1992; Meyer, 2001). User provided markers can be attractive for interactive segmentation but for automatic segmentation other techniques have to be considered. An accurate extraction of reliable markers requires prior knowledge on the latter (color, texture, shape, etc.). To incorporate such prior knowledge for the automatic extraction of markers, machine-learning techniques (Derivaux, 2007; Lezoray, 2002; Levner 2007) are the most natural candidates. Figure 2 provides a schematic view of all components involved in the design of a morphological segmentation scheme relying on machine learning algorithms for marker extraction. To perform morphological color image segmentation, a machine learning based classification of pixel feature vectors is done. The result is labeled in connected components and refined by a color watershed. To infer a proper machine learning based pixel classifier, an image database with an associated ground truth is constructed and pixel feature vectors are shared among classes as a basis for supervised learning. In the following Sections, conceiving of each one of these components is described.

Key Terms in this Chapter

Support Vector Machines: SVM map input vector to a higher dimensional space where a maximal hyperplane is constructed.

Mathematical Morphology: Mathematical morphology (MM) is a theoretical model for digital images built upon lattice theory and topology. It is the foundation of morphological image processing, which is based on shift-invariant (translation invariant) operators based principally on Minkowski addition.

Classifier Combination: Classifier combination consists in combining results obtained from a set of classifiers to achieve higher performance than each single classifier.

Watershed: Segmentation by watershed designs a family of segmentation methods that consider an image as a topographic relief the flooding of which is simulated.

Classi fication: The process of deriving a mathematical function that can predict the membership of a class based on input data.

Ground Truth: A ground-truth database is a database that provides a list of the objects in each image.

Machine Learning: As a broad subfield of artificial intelligence, machine learning is concerned with the design and development of algorithms and techniques that allow computers to “learn”.

Model Selection: Selection of an optimal model to predict outputs from inputs by fitting adjustable parameters.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Themis P. Exarchos, Athanasios Papadopoulos, Dimitrios I. Fotiadis
Chapter 1
Ioannis Dimou, Michalis Zervakis, David Lowe, Manolis Tsiknakis
The automation of diagnostic tools and the increasing availability of extensive medical datasets in the last decade have triggered the development... Sample PDF
Computational Methods and Tools for Decision Support in Biomedicine: An Overview of Algorithmic Challenges
Chapter 2
William Hsu, Alex A.T. Bui, Ricky K. Taira, Hooshang Kangarloo
Though an unparalleled amount and diversity of imaging and clinical data are now collected as part of routine care, this information is not... Sample PDF
Integrating Imaging and Clinical Data for Decision Support
Chapter 3
Spyretta Golemati, John Stoitsis, Konstantina S. Nikita
The estimation of motion of the myocardial and arterial wall is important for the quantification of tissue elasticity and contractility and has... Sample PDF
Analysis and Quantification of Motion within the Cardiovascular System: Implications for the Mechanical Strain of Cardiovascular Structures
Chapter 4
Christos V. Bourantas, Katerina Naka, Dimitrios Fotiadis, Lampros Michalis
Intracoronary Ultrasound (ICUS) imaging is an intravascular catheter-based technique which provides real-time, high resolution, cross-sectional... Sample PDF
New Developments in Intracoronary Ultrasound Processing
Chapter 5
Stavroula Mougiakakou, Ioannis Valavanis, Alexandra Nikita, Konstantina S. Nikita
Recent advances in computer science provide the intelligent computation tools needed to design and develop Diagnostic Support Systems (DSSs) that... Sample PDF
Diagnostic Support Systems and Computational Intelligence: Differential Diagnosis of Hepatic Lesions from Computed Tomography Images
Chapter 6
Marotesa Voultsidou, J. Michael Herrmann
Indicative features of an fMRI data set can be evaluated by methods provided by theory of random matrices (RMT). RMT considers ensembles of matrices... Sample PDF
Significance Estimation in fMRI from Random Matrices
Chapter 7
Dimitrios C. Karampinos, Robert Dawe, Konstantinos Arfanakis, John G. Georgiadis
Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue microstructure by probing the diffusion of water... Sample PDF
Optimal Diffusion Encoding Strategies for Fiber Mapping in Diffusion MRI
Chapter 8
Dimitrios G. Tsalikakis, Petros S. Karvelis, Dimitrios I. Fotiadis
Segmentation plays a crucial role in cardiac magnetic resonance imaging (CMRI) applications, since it permits automated detection of regions of... Sample PDF
Segmentation of Cardiac Magnetic Resonance Images
Chapter 9
Katia Marina Passera, Luca Tommaso Mainardi
Image registration is the process of determining the correspondence of features between images collected at different times or using different... Sample PDF
Image Registration Algorithms for Applications in Oncology
Chapter 10
Lena Costaridou, Spyros Skiadopoulos, Anna Karahaliou, Nikolaos Arikidis, George Panayiotakis
Breast cancer is the most common cancer in women worldwide. Mammography is currently the most effective modality in detecting breast cancer... Sample PDF
Computer-Aided Diagnosis in Breast Imaging: Trends and Challenges
Chapter 11
E. Kyriacou, C.I. Christodoulou, C. Loizou, M.S. Pattichis, C.S. Pattichis, S. Kakkos
Stroke is the third leading cause of death in the Western world and a major cause of disability in adults. The objective of this work was to... Sample PDF
Assessment of Stroke by Analysing Cartoid Plaque Morphology
Chapter 12
Marios Neofytou, Constantinos Pattichis, Vasilios Tanos, Marios Pattichis, Eftyvoulos Kyriacou
The objective of this chapter is to propose a quantitative hysteroscopy imaging analysis system in gynaecological cancer and to provide the current... Sample PDF
Quantitative Analysis of Hysteroscopy Imaging in Gynecological Cancer
Chapter 13
Thomas V. Kilindris, Kiki Theodorou
Patient anatomy, biochemical response, as well functional evaluation at organ level, are key fields that produce a significant amount of multi modal... Sample PDF
Combining Geometry and Image in Biomedical Systems: The RT TPS Case
Chapter 14
Ioannis Tsougos, George Loudos, Panagiotis Georgoulias, Konstantina S. Nikita, Kiki Theodorou
Quantitative three-dimensional nuclear medical imaging plays a continuously increasing role in radionuclide dosimetry, allowing the development of... Sample PDF
Internal Radionuclide Dosimetry using Quantitative 3-D Nuclear Medical Imaging
Chapter 15
Evanthia E. Tripoliti, Dimitrios I. Fotiadis, Konstantia Veliou
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) modality which can significantly improve our understanding of the brain... Sample PDF
Diffusion Tensor Imaging and Fiber Tractography
Chapter 16
Anastasios Koutlas, Dimitrios I. Fotiadis
The aim of this chapter is to analyze the recent advances in image processing and machine learning techniques with respect to facial expression... Sample PDF
Image Processing and Machine Learning Techniques for Facial Expression Recognition
Chapter 17
Arcangelo Merla
This chapter presents an overview on recent developments in the field of clinical applications of the functional infrared imaging. The functional... Sample PDF
Developments and Advances in Biomedical Functional Infrared Imaging
Chapter 18
Aristotelis Chatziioannou, Panagiotis Moulos
The completion of the Human Genome Project and the emergence of high-throughput technologies at the dawn of the new millennium, are rapidly changing... Sample PDF
DNA Microarrays: Analysis and Interpretation
Chapter 19
Nikolaos Giannakeas, Dimitrios I. Fotiadis
Microarray technology allows the comprehensive measurement of the expression level of many genes simultaneously on a common substrate. Typical... Sample PDF
Image Processing and Machine Learning Techniques for the Segmentation of cDNA
Chapter 20
Petros S. Karvelis, Dimitrios I. Fotiadis
Automated chromosome analysis is now becoming routine in most human cytogenetics laboratories. It involves both processing and analysis of digital... Sample PDF
Recent Advances in Automated Chromosome Image Analysis
Chapter 21
O. Lezoray, G. Lebrun, C. Meurie, C. Charrier, A. Elmotataz, M. Lecluse
The segmentation of microscopic images is a challenging application that can have numerous applications ranging from prognosis to diagnosis.... Sample PDF
Machine Learning in Morphological Segmentation
Chapter 22
Michael Haefner, Alfred Gangl, Michael Liedlgruber, A. Uhl, Andreas Vecsei, Friedrich Wrba
Wavelet-, Fourier-, and spatial domain-based texture classification methods have been used successfully for classifying zoom-endoscopic colon images... Sample PDF
Pit Pattern Classification Using Multichannel Features and Multiclassification
Chapter 23
C. Papaodysseus, P. Rousopoulos, D. Arabadjis, M. Panagopoulos, P. Loumou
In this chapter the state of the art is presented in the domain of automatic identification and classification of bodies on the basis of their... Sample PDF
Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images
Chapter 24
Alexia Giannoula, Richard S.C. Cobbold
“Elastography” or “elasticity imaging” can be defined as the science and methodology of estimating the mechanical properties of a medium (including... Sample PDF
Nonlinear Ultrasound Radiation-Force Elastography
Chapter 25
Valentina Russo, Roberto Setola
The aim of this chapter is to provide an overview about models and methodologies used for the Dynamic Contrast Enhancement (DCE) analysis. DCE is a... Sample PDF
Dynamic Contrast Enhancement: Analysis's Models and Methodologies
Chapter 26
George K. Matsopoulos
The accurate estimation of point correspondences is often required in a wide variety of medical image processing applications including image... Sample PDF
Automatic Correspondence Methods towards Point-Based Medical Image Registration: An Evaluation Study
Chapter 27
Alberto Taboada-Crispi, Hichem Sahli, Denis Hernandez-Pacheco, Alexander Falcon-Ruiz
Various approaches have been taken to detect anomalies, with certain particularities in the medical image scenario, linked to other terms... Sample PDF
Anomaly Detection in Medical Image Analysis
Chapter 28
C. Delgorge-Rosenberger, C. Rosenberger
The authors present in this chapter an overview on evaluation of medical image compression. The different methodologies used in the literature are... Sample PDF
Evaluation of Medical Image Compression
Chapter 29
Charalampos Doukas, Ilias Maglogiannis
Medical images are often characterized by high complexity and consist of high resolution image files, introducing thus several issues regarding... Sample PDF
Advanced ROI Coding Techniques for Medical Imaging
Chapter 30
Farhang Sahba
Ultrasound imaging now has widespread clinical use. It involves exposing a part of the body to highfrequency sound waves in order to generate images... Sample PDF
Segmentation Methods in Ultrasound Images
About the Editors
About the Contributors