PACS Monitoring

PACS Monitoring

Carrison K.S. Tong (Pamela Youde Nethersole Eastern Hospital, HK) and Eric T.T. Wong (Hong Kong Polytechnic Institute, Hong Kong)
DOI: 10.4018/978-1-59904-672-3.ch015
OnDemand PDF Download:
$37.50

Abstract

The present study advocates the application of statistical process control (SPC) as a performance monitoring tool for a PACS. The objective of statistical process control (SPC) differs significantly from the traditional QC/QA process. In the traditional process, the QC/QA tests are used to generate a datum point and this datum point is compared to a standard. If the point is out of specification, then action is taken on the product and action may be taken on the process. To move from the traditional QC/QA process to SPC, a process control plan should be developed, implemented, and followed. Implementing SPC in the PACS environment need not be a complex process. However, if the maximum effect is to be achieved and sustained, PACSSPC must be implemented in a systematic manner with the active involvement of all employees from line associates to executive management. SPC involves the use of mathematics, graphics, and statistical techniques, such as control charts, to analyze the PACS process and its output, so as to take appropriate actions to achieve and maintain a state of statistical control. While SPC is extensively used in the healthcare industry, especially in patient monitoring, it is rarely applied in the PACS environment. One may refer to a recent SPC application that Mercy Hospital (Alegent Health System) initiated after it implemented a PACS in November 2003 (Stockman & Krishnan, 2006). The anticipated benefits characteristic to PACS through the use of SPC include: • Reduced image retake and diagnostic expenditure associated with better process control. • Reduced operating costs by optimizing the maintenance and replacement of PACS equipment components. • Increased productivity by identification and elimination of variation and outof- control conditions in the imaging and retrieval processes. • Enhanced level of quality by controlled applications. SPC involves using statistical techniques to measure and analyze the variation in processes. Most often used for manufacturing processes, the intent of SPC is to monitor product quality and maintain processes to fixed targets. Hence besides the HSSH techniques, the proposed TQM approach would include the use of SPC. Although SPC will not improve the reliability of a poorly designed PACS, it can be used to maintain the consistency of how the individual process is provided and, therefore, of the entire PACS process. A primary tool used for SPC is the control chart, a graphical representation of certain descriptive statistics for specific quantitative measurements of the PACS process. These descriptive statistics are displayed in the control chart in comparison to their “in-control” sampling distributions. The comparison detects any unusual variation in the PACS delivery process, which could indicate a problem with the process. Several different descriptive statistics can be used in control charts and there are several different types of control charts that can test for different causes, such as how quickly major vs. minor shifts in process means are detected. These control charts are also used with service level measurements to analyze process capability and for continuous process improvement efforts.
Chapter Preview
Top

Background

The present study advocates the application of statistical process control (SPC) as a performance monitoring tool for a PACS. The objective of statistical process control (SPC) differs significantly from the traditional QC/QA process. In the traditional process, the QC/QA tests are used to generate a datum point and this datum point is compared to a standard. If the point is out of specification, then action is taken on the product and action may be taken on the process. To move from the traditional QC/QA process to SPC, a process control plan should be developed, implemented, and followed. Implementing SPC in the PACS environment need not be a complex process. However, if the maximum effect is to be achieved and sustained, PACS-SPC must be implemented in a systematic manner with the active involvement of all employees from line associates to executive management. SPC involves the use of mathematics, graphics, and statistical techniques, such as control charts, to analyze the PACS process and its output, so as to take appropriate actions to achieve and maintain a state of statistical control. While SPC is extensively used in the healthcare industry, especially in patient monitoring, it is rarely applied in the PACS environment. One may refer to a recent SPC application that Mercy Hospital (Alegent Health System) initiated after it implemented a PACS in November 2003 (Stockman & Krishnan, 2006). The anticipated benefits characteristic to PACS through the use of SPC include:

  • Reduced image retake and diagnostic expenditure associated with better process control.

  • Reduced operating costs by optimizing the maintenance and replacement of PACS equipment components.

  • Increased productivity by identification and elimination of variation and out-of-control conditions in the imaging and retrieval processes.

  • Enhanced level of quality by controlled applications.

SPC involves using statistical techniques to measure and analyze the variation in processes. Most often used for manufacturing processes, the intent of SPC is to monitor product quality and maintain processes to fixed targets. Hence besides the HSSH techniques, the proposed TQM approach would include the use of SPC. Although SPC will not improve the reliability of a poorly designed PACS, it can be used to maintain the consistency of how the individual process is provided and, therefore, of the entire PACS process.

A primary tool used for SPC is the control chart, a graphical representation of certain descriptive statistics for specific quantitative measurements of the PACS process. These descriptive statistics are displayed in the control chart in comparison to their “in-control” sampling distributions. The comparison detects any unusual variation in the PACS delivery process, which could indicate a problem with the process. Several different descriptive statistics can be used in control charts and there are several different types of control charts that can test for different causes, such as how quickly major vs. minor shifts in process means are detected. These control charts are also used with service level measurements to analyze process capability and for continuous process improvement efforts.

Top

Relevant Work

During recent years there has been a growing interest and debate in the application of SPC for improving the quality of software products. Given the need for clarification about the role of SPC in the debate surrounding software quality, several published case studies in software development and maintenance were discussed. It was found there is a need for greater awareness and analysis of the statistical characteristics of software quality data prior to the use of SPC methods. In addition, a more widespread understanding of the inherent limitations of the basic SPC methods as well as knowledge of the usable alternatives needs to be fostered within the software engineering community. Where measurements are limited, the data intensive techniques of SPC may not be applicable (Lewis, 1999).

Complete Chapter List

Search this Book:
Reset
Table of Contents
Chapter 1
Introduction  (pages 1-27)
Carrison K.S. Tong, Eric T.T. Wong
Picture archiving and communications system (PACS) is a filmless and computerized method of communicating and storing medical image data such as... Sample PDF
Introduction
$37.50
Chapter 2
Carrison K.S. Tong, Eric T.T. Wong
The protection of information for a healthcare organization, in any form, while in storage, processing, or transport, from being available to any... Sample PDF
ISO 27000 Information Security Management System
$37.50
Chapter 3
Carrison K.S. Tong, Eric T.T. Wong
PACS disasters can, and do, appear in a variety of forms including storage hard disk failure, file corruption, network breakdown, and server... Sample PDF
High Availability Technologies for PACS
$37.50
Chapter 4
Carrison K.S. Tong, Eric T.T. Wong
Fundamental to ISO 27000 (ISO/IEC 27001:2005, 2005) is the concept of an information security management system (ISMS). The information security... Sample PDF
Implementation of Information Security Management System (ISMS)
$37.50
Chapter 5
Carrison K.S. Tong, Eric T.T. Wong
Filmless hospital is transforming at an unprecedented rate. Physicians, nurses, clinicians, pharmacists, radiologists, emergency departments, local... Sample PDF
Planning for a Filmless Hospital
$37.50
Chapter 6
Carrison K.S. Tong, Eric T.T. Wong
More rapidly than any technological advance in medical history, filmless hospital is changing the clinical and business aspects of radiology... Sample PDF
Design of a Filmless Hospital
$37.50
Chapter 7
Carrison K.S. Tong, Eric T.T. Wong
A PACS has tremendous benefits (Bryan, Weatherburn, Watkins, Buxton, 1999) and values outside of radiology as well as internally. The biggest... Sample PDF
Implementation of Filmless Hospital
$37.50
Chapter 8
Carrison K.S. Tong, Eric T.T. Wong
As PACS gains widespread use, the importance of Quality Control (QC), Quality Assurance (QA), and Business Continuity Plan (BCP) in PACS is rising.... Sample PDF
Quality Control, Quality Assurance, and Business Continuity Plan in PACS
$37.50
Chapter 9
PACS Quality Dimensions  (pages 140-153)
Carrison K.S. Tong, Eric T.T. Wong
A large number of studies have attempted to identify the factors that contribute to good PACS quality, such as that shown by Reiner et al (2003).... Sample PDF
PACS Quality Dimensions
$37.50
Chapter 10
Customer Oriented PACS  (pages 154-169)
Carrison K.S. Tong, Eric T.T. Wong
During the early development phase of PACS, its implementation was mainly a matter of the radiology department. This is changing rapidly, and PACS... Sample PDF
Customer Oriented PACS
$37.50
Chapter 11
Carrison K.S. Tong, Eric T.T. Wong
Nowadays it is hard to think of any applications in modern society in which electronic systems do not play a significant role. In aerospace and... Sample PDF
Design for PACS Reliability
$37.50
Chapter 12
Carrison K.S. Tong, Eric T.T. Wong
There are some medical errors for which preventability is rarely questioned. These include medical errors such as wrong site surgery, wrong... Sample PDF
PACS Failure Mode and Effects
$37.50
Chapter 13
Carrison K.S. Tong, Eric T.T. Wong
Economically speaking, it is interesting to see that over the years, the question as to whether PACS is cost-justifiable has not been easier to... Sample PDF
PACS Network Traffic Control
$37.50
Chapter 14
Human Factors and Culture  (pages 225-243)
Carrison K.S. Tong, Eric T.T. Wong
Human factors engineering (HFE) is the science of designing systems to fit human capabilities and limitations. These include limitations in... Sample PDF
Human Factors and Culture
$37.50
Chapter 15
PACS Monitoring  (pages 244-263)
Carrison K.S. Tong, Eric T.T. Wong
The present study advocates the application of statistical process control (SPC) as a performance monitoring tool for a PACS. The objective of... Sample PDF
PACS Monitoring
$37.50
Chapter 16
Carrison K.S. Tong, Eric T.T. Wong
To illustrate the benefits of implementing QM in PACS, a successful case based on the Six Sigma approach is given below. It involves a project... Sample PDF
Quality Management Benefits
$37.50
Chapter 17
Epilogue  (pages 288-297)
Carrison K.S. Tong, Eric T.T. Wong
Today’s filmless radiology through PACS provides greater speed and superior image quality. However, when workflow is encumbered by inefficiencies... Sample PDF
Epilogue
$37.50
Appendix A
Appendix B
Appendix C
About the Authors