Quaternionic Neural Networks: Fundamental Properties and Applications

Quaternionic Neural Networks: Fundamental Properties and Applications

Teijiro Isokawa (University of Hyogo, Japan), Nobuyuki Matsui (University of Hyogo, Japan) and Haruhiko Nishimura (University of Hyogo, Japan)
DOI: 10.4018/978-1-60566-214-5.ch016
OnDemand PDF Download:


Quaternions are a class of hypercomplex number systems, a four-dimensional extension of imaginary numbers, which are extensively used in various fields such as modern physics and computer graphics. Although the number of applications of neural networks employing quaternions is comparatively less than that of complex-valued neural networks, it has been increasing recently. In this chapter, the authors describe two types of quaternionic neural network models. One type is a multilayer perceptron based on 3D geometrical affine transformations by quaternions. The operations that can be performed in this network are translation, dilatation, and spatial rotation in three-dimensional space. Several examples are provided in order to demonstrate the utility of this network. The other type is a Hopfield-type recurrent network whose parameters are directly encoded into quaternions. The stability of this network is demonstrated by proving that the energy decreases monotonically with respect to the change in neuron states. The fundamental properties of this network are presented through the network with three neurons.
Chapter Preview


Several systems for hypercomplex numbers have been investigated, such as quaternion, octonion, sedenion. They can be described as special cases of Clifford algebra (Porteous, 1995) (Lounesto, 2001). Quaternions are hypercomplex numbers of rank four; they are the four-dimensional extensions of imaginary numbers discovered by Sir William Rowan Hamilton (Graves, 1975) (Hankins, 1980) (Bell, 1999), which have been extensively used in modern mathematics, signal processing, computer graphics, robotics, etc (Lambek, 1995) (Mukundan, 2002) (Hoggar, 1992) (Kuipers, 1998) (Previn & Webb, 1983) (Sahul, Biswall & Subudhi, 2008) (Bülow & Sommer, 2001). Quaternion is also defined as a special case of Clifford algebra, but the representation of quaternion is simple and easy to understand its geometrical meanings. It has been found that 3D geometrical affine transformations—translation, dilatation, and spatial rotation—in three-dimensional space can be represented compactly and efficiently by the operators of quaternions. In the following section, we recapitulate the basic definitions, operations, and notations of quaternions. The 3D geometrical affine transformation realized by quaternions, which is used in the multilayer perceptron model in this chapter, is also described. For the detailed properties and applications of quaternions, please refer to the literatures (Lambek, 1995) (Mukundan, 2002) (Hoggar, 1992) (Kuipers, 1998).

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Sven Buchholz
Tohru Nitta
Chapter 1
Masaki Kobayashi
Information geometry is one of the most effective tools to investigate stochastic learning models. In it, stochastic learning models are regarded as... Sample PDF
Complex-Valued Boltzmann Manifold
Chapter 2
Takehiko Ogawa
Network inversion solves inverse problems to estimate cause from result using a multilayer neural network. The original network inversion has been... Sample PDF
Complex-Valued Neural Network and Inverse Problems
Chapter 3
Boris Igelnik
This chapter describes the clustering ensemble method and the Kolmogorovs Spline Complex Network, in the context of adaptive dynamic modeling of... Sample PDF
Kolmogorovs Spline Complex Network and Adaptive Dynamic Modeling of Data
Chapter 4
V. Srinivasa Chakravarthy
This chapter describes Complex Hopfield Neural Network (CHNN), a complex-variable version of the Hopfield neural network, which can exist in both... Sample PDF
A Complex-Valued Hopfield Neural Network: Dynamics and Applications
Chapter 5
Mitsuo Yoshida, Takehiro Mori
Global stability analysis for complex-valued artificial recurrent neural networks seems to be one of yet-unchallenged topics in information science.... Sample PDF
Global Stability Analysis for Complex-Valued Recurrent Neural Networks and Its Application to Convex Optimization Problems
Chapter 6
Yasuaki Kuroe
This chapter presents models of fully connected complex-valued neural networks which are complex-valued extension of Hopfield-type neural networks... Sample PDF
Models of Complex-Valued Hopfield-Type Neural Networks and Their Dynamics
Chapter 7
Sheng Chen
The complex-valued radial basis function (RBF) network proposed by Chen et al. (1994) has found many applications for processing complex-valued... Sample PDF
Complex-Valued Symmetric Radial Basis Function Network for Beamforming
Chapter 8
Rajoo Pandey
The equalization of digital communication channel is an important task in high speed data transmission techniques. The multipath channels cause the... Sample PDF
Complex-Valued Neural Networks for Equalization of Communication Channels
Chapter 9
Cheolwoo You, Daesik Hong
In this chapter, the complex Backpropagation (BP) algorithm for the complex backpropagation neural networks (BPN) consisting of the suitable node... Sample PDF
Learning Algorithms for Complex-Valued Neural Networks in Communication Signal Processing and Adaptive Equalization as its Application
Chapter 10
Donq-Liang Lee
New design methods for the complex-valued multistate Hopfield associative memories (CVHAMs) are presented. The author of this chapter shows that the... Sample PDF
Image Reconstruction by the Complex-Valued Neural Networks: Design by Using Generalized Projection Rule
Chapter 11
Naoyuki Morita
The author proposes an automatic estimation method for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic... Sample PDF
A Method of Estimation for Magnetic Resonance Spectroscopy Using Complex-Valued Neural Networks
Chapter 12
Michele Scarpiniti, Daniele Vigliano, Raffaele Parisi, Aurelio Uncini
This chapter aims at introducing an Independent Component Analysis (ICA) approach to the separation of linear and nonlinear mixtures in complex... Sample PDF
Flexible Blind Signal Separation in the Complex Domain
Chapter 13
Nobuyuki Matsui, Haruhiko Nishimura, Teijiro Isokawa
Recently, quantum neural networks have been explored as one of the candidates for improving the computational efficiency of neural networks. In this... Sample PDF
Qubit Neural Network: Its Performance and Applications
Chapter 14
Shigeo Sato, Mitsunaga Kinjo
The advantage of quantum mechanical dynamics in information processing has attracted much interest, and dedicated studies on quantum computation... Sample PDF
Neuromorphic Adiabatic Quantum Computation
Chapter 15
G.G. Rigatos, S.G. Tzafestas
Neural computation based on principles of quantum mechanics can provide improved models of memory processes and brain functioning and is of primary... Sample PDF
Attractors and Energy Spectrum of Neural Structures Based on the Model of the Quantum Harmonic Oscillator
Chapter 16
Teijiro Isokawa, Nobuyuki Matsui, Haruhiko Nishimura
Quaternions are a class of hypercomplex number systems, a four-dimensional extension of imaginary numbers, which are extensively used in various... Sample PDF
Quaternionic Neural Networks: Fundamental Properties and Applications
About the Contributors