Rapid Prototyping and Dental Applications

Rapid Prototyping and Dental Applications

Petros Koidis (Aristotle University of Thessaloniki, Greece) and Marianthi Manda (Aristotle University of Thessaloniki, Greece)
DOI: 10.4018/978-1-60566-292-3.ch016
OnDemand PDF Download:


The present chapter deals with the introduction and implementation of rapid prototyping technologies in medical and dental field. Its purpose is to overview the advantages and limitations derived, to discuss the current status and to present the future directions, especially in dental sector. Furthermore, a flowchart is outlined describing the procedure from the patient to the final 3-D object, presenting the possible alternatives in the process. Finally, an example is presented, decribing the process of the construction of high accurate surgical guided templates in dental implantology, through rapid prototyping.
Chapter Preview


Computational modeling represents the simulation of real-world scenarios in a virtual environment throught the transformation of physical structures into numerical models. It has revolutionized the engineering and science over the last 30 years, by integrating itself into many aspects of the modern life from entertainment through medicine. The framework of operating in an in-silico field allows the practitioner to handle and analyze numerical models of great complexity and under convoluted conditions, with relative ease and mainly safety.

The last years, the computer modeling is experiencing increasing application and extending deeper in the fields of biology and medicine, across a vast range of scale, from the individual molecules and cells of the micro-world, through the varieties of tissue and interstitial interfaces, to complete organs, organ systems and body parts of the macro-world (Robb RA, 1999).

The framework of bio-tissue informatics includes a variety of scientific and engineering disciplines, according which the computational simulation of internal and external configuration of biological structures is conducted, often providing information about biological, biophysical and biochemical properties. It is a matter of multidisciplinary procedure, expressed as bio- or biomimetic modeling. Formerly, biomodeling was used to express a generic term, defining the process during which a biological structure could be transformed into a solid substance (D’ Urso, 1998). Though, currently, after the advances and the vast implementation of the computed technology innovations, the definition of biomodeling can be extented in order to include the fidel replication of a biological structure in terms of geometry or morphology both in a computer-based or a solid physical form. Based on the latter definition of biomodeling, the resulted output-forms (biomodels) can be classified into: a) computed-based and b) physical biomodels. The formers can be further divided into virtual and computational biomodels. Physical models constitute the physical production in an actual or scaled size of a computer-based, virtual, usually, models by engineering technologies (Lohfeld S, 2005).

Each kind of computer-based model constitutes an object system (such an anatomical organ), which may undergoes specific object –operations, the results of which provide information of qualitative and / or quantitative nature. These operations are highly independed and may be distinguished in: a) visualization, b) manipulation and, finally, c) analysis. More specific, visualization serves the viewing and comprehending the structures and the dynamics of the object system. Manipulation aims at the altering of the object system either by changing the relationship among the consisted objects or by altering the objects themselves. On the other hand, analysis aims at the extraction of quantitative measures of certain parameters, which are related to the functionality of the object system (Sun W, Lecturer Topic Sp.AYO1O2). Virtual biomodels are directed to suit the purpose of visualization and manipulation, while computational models are suited for the purpose of the analysis and, specifically, of the biomechanical analysis, exhibiting stress and strain distributions (Udupa JK, 1999).

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Petros Koidis
Andriani Daskalaki
Andriani Daskalaki
Chapter 1
Demetrios J. Halazonetis
Cephalometric analysis has been a routine diagnostic procedure in Orthodontics for more than 60 years, traditionally employing the measurement of... Sample PDF
Software Support for Advanced Cephalometric Analysis in Orthodontics
Chapter 2
Jorg Hendricks, Gert Wollny, Alexander Hemprich, Thomas Hierl
This chapter presents a toolchain including image segmentation, rigid registration and a voxel based non-rigid registration as well as 3D... Sample PDF
A New Software Environment for 3D-Time Series Analysis
Chapter 3
Antheunis Versluis, Daranee Tantbirojn
Residual stress due to polymerization shrinkage of restorative dental materials has been associated with a number of clinical symptoms, ranging from... Sample PDF
Relationship Between Shrinkage and Stress
Chapter 4
Andreas Vogel
This chapter introduces a computer-controlled method for mandible alignment. The exact positioning of the mandible in relation to the maxilla is... Sample PDF
An Objective Registration Method for Mandible Alignment
Chapter 5
Thomas Hierl, Heike Huempfner-Hierl, Daniel Kruber, Thomas Gaebler, Alexander Hemprich, Gert Wollny
This chapter discusses the requirements of an image analysis tool designed for dentistry and oral and maxillofacial surgery focussing on 3D-image... Sample PDF
Requirements for a Universal Image Analysis Tool in Dentistry and Oral and Maxillofacial Surgery
Chapter 6
N.A. Borghese, I. Frosio
This chapter shows how large improvement in image quality can be obtained when radiographs are filtered using adequate statistical models. In... Sample PDF
Denoising and Contrast Enhancement in Dental Radiography
Chapter 7
Ralf K.W. Schulze
Established techniques for three-dimensional radiographic reconstruction such as computed tomography (CT) or, more recently cone beam computed... Sample PDF
3D Reconstructions from Few Projections in Oral Radiology
Chapter 8
Shital Patel, Yos Morsi
Tooth loss due to several reasons affects most people adversely at some time in their lives. A biological tooth substitute, which could not only... Sample PDF
Advances and Trends in Tissue Engineering of Teeth
Chapter 9
Wei-Bang Chen, Chengcui Zhang
Bacterial colony enumeration is an essential tool for many widely used biomedical assays. This chapter introduces a cost-effective and fully... Sample PDF
Automated Bacterial Colony Counting for Clonogenic Assay
Chapter 10
Michele Jacotti, Domenico Ciambrone
In this chapter the authors describe a new system for guided surgery in implantology. The aim of this system is to have a “user friendly”... Sample PDF
A New System in Guided Surgery: The Flatguide(TM) System
Chapter 11
Ferenc Pongracz
Intraoperative transfer of the implant and prosthesis planning in dentistry is facilitated by drilling templates or active, image-guided navigation.... Sample PDF
Visualization and Modelling in Dental Implantology
Chapter 12
Antonios Zampelis, George Tsamasphyros
Biomechanical research has gained recognition in medical sciences. Osseointegrated dental implants, being medical devices functioning under constant... Sample PDF
Finite Element Analysis and its Application in Dental Implant Research
Chapter 13
Amit Chattopadhyay, Tiago Coelho de Souza, Oscar Arevalo
Electronic Oral Health Records (EOHRs) contains all personal health information belonging to an individual and is entered and accessed... Sample PDF
Electronic Oral Health Records in Practice and Research
Chapter 14
Maxim Kolesnikov, Arnold D. Steinberg, Milos Zefran
This chapter describes the haptic dental simulator developed at the University of Illinois at Chicago. It explores its use and advantages as an... Sample PDF
Haptic-Based Virtual Reality Dental Simulator as an Educational Tool
Chapter 15
Anka Letic-Gavrilovic
In this chapter, the author will demonstrate and describe a project to develop a unique database with multilingual information and knowledge... Sample PDF
Digital Library for Dental Biomaterials
Chapter 16
Petros Koidis, Marianthi Manda
The present chapter deals with the introduction and implementation of rapid prototyping technologies in medical and dental field. Its purpose is to... Sample PDF
Rapid Prototyping and Dental Applications
Chapter 17
Hiroo Tamagawa, Hideaki Amano, Naoji Hayashi, Yasuyuki Hirose
In this chapter, the authors report the minimal set of characters from the Unicode Standard that is sufficient for the notation of human dentition... Sample PDF
Unicode Characters for Human Dentition: New Foundation for Standardized Data Exchange and Notation in Countries Employing Double-Byte Character Sets
Chapter 18
Nikos Nikolaidis, Ioannis Marras, Georgios Mikrogeorgis, Kleoniki Lyroudia, Ioannis Pitas
The availability of datasets comprising of digitized images of human body cross sections (as well as images acquired with other modalities such as... Sample PDF
Virtual Dental Patient: A 3D Oral Cavity Model and its Use in Haptics-Based Virtual Reality Cavity Preparation in Endodontics
About the Contributors