Scheduling and Access Control for Wireless Connections with Throughput Guarantees

Scheduling and Access Control for Wireless Connections with Throughput Guarantees

Peifang Zhang (University of California, Irvine, USA) and Scott Jordan (University of California, Irvine, USA)
DOI: 10.4018/978-1-59904-820-8.ch014
OnDemand PDF Download:
$37.50

Abstract

Emerging wideband code division multiple access (WCDMA) data services will likely require resource allocation to ensure that throughput targets are met. Scheduling and access control can both be key components in this task. In this chapter, we introduce a two-layer scheduler and connection access controller that attempts to balance efficiency with fairness. We first propose a scheduler that takes advantage of variations in the wireless channel—both channel fluctuations in time for each user, and channel variations among multiple users at a particular time. By mixing a max-min policy with a policy of serving users with relatively good channels, the scheduler can achieve individual average throughput targets in a manner that encourages system efficiency. We then propose a two-layer algorithm that offers targeted throughput for interactive nomadic data streams, such as video or music streaming. The design purpose is to provide users with service differentiation, which lays the groundwork for network optimization in terms of capacity or utility, and can be easily extended to revenue maximization. Upon the request of a data stream connection, a target throughput is negotiated between the user and the network/base station. The network attempts to achieve the throughput targets over the duration of each individual connection by maximizing a system objective based on users’ satisfaction that is represented by a utility function. We assume that a users’ utility function depends not only on the throughput target but also on final achieved throughput. The algorithm integrates connection access control and resource allocation per connection request with rate scheduling on a per frame basis adaptive to slow fading. Through numerical analysis, the proposed joint scheduler and connection access controller is shown to achieve the design goals.
Chapter Preview
Top

Introduction

In recent years, wireless networks have been evolving rapidly, driven by emerging multimedia applications and supported by advanced technologies. Code division multiple access (CDMA), one of the most widely applied technologies for cellular wireless networks, is undergoing a fundamental transition from providing voice only service to wideband CDMA (WCDMA) that accommodates convergence between data, audio and video (Holma & Toskala, 2004).

Much research has addressed the extremes of traffic that requires constant bit rate and traffic that can accept best effort service. However, there is an intermediate class of interactive traffic that does not require constant bit rate but requires more predictable throughput than that provided by best effort service. Relatively few papers have addressed connection access control (CAC) and rate scheduling (RS) for such interactive traffic. For such interactive traffic, we would hope that the network could support soft performance guarantees to match the limited tolerance of these applications to variations in performance, and enhance radio resource efficiency and aggregate network capacity as well.

An impediment so far to addressing CAC and RS for such traffic has been the lack of the ability to allow interactive connections to communicate a performance goal and to allow the network some flexibility in achieving these goals. In this chapter, we first focus on the scheduler, which allocates power and rate in real-time among competing data streams. Efficiency depends on how well the scheduler takes advantage of variations among users. Fairness depends on how well the scheduler achieves the throughput targets of individual data streams. The two are related, as higher efficiency makes throughput targets easier to achieve. We then consider joint CAC and RS for connections, which can specify a target throughput. The target is interpreted as an average to be achieved over the lifetime of the connection. A user’s evaluation of the throughput achieved over the connection is represented by a utility function that depends not only on the throughput target but also on the connection’s achieved throughput, thus allowing satisfaction to depend on the degree to which the target was achieved. There is a balance to be achieved between the number of connections accepted into the network and the throughput achieved for each accepted connection. We therefore jointly consider CAC and RS, and propose a two-layer structure that separates these functions by time scale and that communicates vital information between these two layers.

Complete Chapter List

Search this Book:
Reset
List of Reviewers
Table of Contents
Foreword
Abbas Jamalipour
Preface
Nicola Cranley , Liam Murphy
Chapter 1
Ronan Skehill, William Kent, Dorel Picovici, Michael Barry, Sean McGrath
This chapter introduces quality of service in multi-access wireless networks. Specifically it demonstrates how QoS is implemented in IEEE 802.11 and... Sample PDF
Evaluating QoS in a Multi-Access Wireless Network
$37.50
Chapter 2
Dirk Staehle, Andreas Mäder
This chapter gives an overview of the background and functionality of the high speed downlink packet access (HSDPA), and provides insights into the... Sample PDF
Radio Resource Management Strategies for HSDPA-Enhanced UMTS Networks
$37.50
Chapter 3
Nidal Nasser, Tarek Bejaoui
Major research challenges in the next generation of wireless networks include the provisioning of worldwide seamless mobility across heterogeneous... Sample PDF
Handoff Management in Next Generation Wireless Networks
$37.50
Chapter 4
Ming Li, Roberto Riggio, Francesco De Pellegrini, Imrich Chlamtac
This chapter provides a comprehensive review of the architectures, algorithms, and protocols in the topic of resource management in IEEE... Sample PDF
Resource Management in IEEE 802.11 Based Wireless Networks
$37.50
Chapter 5
Anna Sfairopoulou, Carlos Macián, Boris Bellalta
Network Technologies and Strategies (NeTS) Research Group, Universitat Pompeu Fabra, SpainThis chapter introduces the problems caused to voice over... Sample PDF
Adaptive Codec Selection for VoIP in Multi-Rate WLANs
$37.50
Chapter 6
Michael M. Markou, Christos G. Panayiotou
This chapter introduces the network buffer control techniques as a mean to provide QoS. This problem has been extensively studied in the context of... Sample PDF
Buffer Control Techniques for QoS Provisioning in Wireless Networks
$37.50
Chapter 7
Gabriel-Miro Muntean, Janet Adams
Wireless networks are becoming a part of everyday life for many people. When a mobile device has wireless LAN capability, multimedia content can be... Sample PDF
Power Saving in Wireless Multimedia Streaming to Mobile Devices
$37.50
Chapter 8
Jose Luis Jodra, Fidel Liberal, Begoña Blanco Jauregi
This chapter introduces the principal characteristics of MANETs and shows how these particularities may affect both QoS conditions and QoS... Sample PDF
Multimedia Services Provision in MANETs
$37.50
Chapter 9
Andrej Kos, Mojca Volk, Janez Bester
Commonly understood as the next generation networks (NGN), a composite environment of proven telecommunications and Internet-oriented mechanisms has... Sample PDF
Quality Assurance in the IMS-Based NGN Environment
$37.50
Chapter 10
Marcio Nieblas Zapater, Graça Bressan
This chapter discusses the quality assurance of multimedia services over IP networks from the end user standpoint and introduces the concept of... Sample PDF
Quality of Experience for Video Services
$37.50
Chapter 11
Dorel Picovici, John Nelson
Perceptual voice quality measurement can be defined as an objective quantification of an overall impression of the perceived stimulus. An... Sample PDF
Perceptual Voice Quality Measurements for Wireless Networks
$37.50
Chapter 12
Tacha Serif, Gheorghita Ghinea
This chapter describes an investigation exploring user experiences of accessing streamed multimedia content, when that content is tailored according... Sample PDF
Enhancing the Multimedia Tour Guide Experience: Transmission Tailoring Based on Content, Location, and Device Type
$37.50
Chapter 13
Harilaos Koumaras, Fidel Liberal, Lingfen Sun
The concept of PQoS, although in general it deals with the user satisfaction with a specific delivered/ requested service, is in practice... Sample PDF
PQoS Assessment Methods for Multimedia Services
$37.50
Chapter 14
Peifang Zhang, Scott Jordan
Emerging wideband code division multiple access (WCDMA) data services will likely require resource allocation to ensure that throughput targets are... Sample PDF
Scheduling and Access Control for Wireless Connections with Throughput Guarantees
$37.50
Chapter 15
Paolo Chini, Giovanni Giambene, Snezana Hadzic
Nowadays there is an increasing need of broadband communication anytime, anywhere for users that expect to receive multimedia services with support... Sample PDF
Broadband Satellite Multimedia Networks
$37.50
Chapter 16
Panagiotis Papadimitriou, Vassilis Tsaoussidis
An increasing demand for multimedia data delivery coupled with reliance in best-effort networks, such as the Internet, has spurred interest on... Sample PDF
End-to-End Support for Multimedia QoS in the Internet
$37.50
Chapter 17
Tarek Bejaoui, Nidal Nasser
This chapter introduces the cross layer design for resource allocation over multimedia wireless networks. Conventional layered packet scheduling and... Sample PDF
Cross-Layer Radio Resource Management Protocols for QoS Provisioning in Multimedia Wireless Networks
$37.50
Chapter 18
Gürkan Gür, Suzan Bayhan, Fatih Alagöz
This chapter introduces the QoS issues and support in transport protocols for wireless multimedia transmission. After an overview of the transport... Sample PDF
Transport Protocols and QoS for Wireless Multimedia
$37.50
About the Contributors