Smart Antennas for Automatic Radio Frequency Identification Readers

Smart Antennas for Automatic Radio Frequency Identification Readers

Nemai Chandra Karmakar (Monash University, Australia)
DOI: 10.4018/978-1-59904-988-5.ch021
OnDemand PDF Download:
$37.50

Abstract

Various smart antennas developed for automatic radio frequency identification (RFID) readers are presented. The main smart antennas types of RFID readers are switched beam, phased array, adaptive beamfsorming and multiple input multiple output (MIMO) antennas. New development in the millimeter wave frequency band?60 GHz and above? exploits micro-electromechanical system (MEMS) devices and nano-components. Realizing the important of RFID applications in the 900 MHz frequency band, a 3×2-element planar phased array antenna has been designed in a compact package at Monash University. The antenna covers 860-960 GHz frequency band with more than 10 dB input return loss, 12 dBi broadside gain and up to 40° elevation beam scanning with a 4-bit reflection type phase shifter array. Once implemented in the mass market, RFID smart antennas will contribute tremendously in the areas of RFID tag reading rates, collision mitigation, location finding of items and capacity improvement of the RFID system.
Chapter Preview
Top

Introduction

The Radio Frequency Identification (RFID) system is a new wireless data transmission and reception technique for automatic identification, asset tracking, security surveillance and many other emerging applications. An RFID system consists of three major components: a reader or integrator, which sends interrogation signals to an RFID transmitter responder (transponder) or tag, which is to be identified; an RFID tag, which contains the identification code; and middleware, which maintains the interface and the software protocol to encode and decode the identification data from the reader into a mainframe or a personal computer. Figure 1 below illustrates a generic block diagram of the RFID system. At the dawn of the new millennium, as barcodes and other means for identification and asset tracking are becoming inadequate for recent demands, RFID technology has been facilitating logistics, supply chain management, asset tracking, security access control, intelligent transportation and many other areas at an accelerated pace. A recent Google search of the terminology ‘RFID’ brought up thirty eight million hits. This large huge number of URLs represents the significant activities and applications of RFID in various sectors in either commercial domains or government agencies.

Figure 1.

Generic RFID system

RFID technology is an off-shoot miniaturized version of the ‘identification, friend or foe (IFF)’ radar system developed by British defence during World War II. This radar technology used backscattered signals to identify and/or discriminate friendly targets from enemy targets and enabled decisions to attack appropriate targets. While low frequency RFID tags use strong magnetic coupling by being in proximity to the RFID reader’s coil antennas, all ultra high frequency (UHF) and microwave RFID readers and tags are based on the radar principle of sending far-field electromagnetic (EM) interrogating signals from the readers and receiving the back-scattered modulated signals with the unique identification code of the tag. Thus identification of items, human beings and animals is possible in all weather conditions and off line-of-sight communication.

RFID was first proposed by H. Stockman (Stockman, 1948) who introduced the RFID system in his landmark paper “Communication by Means of Reflected Power”. Stockman advocated that considerable research and development work was required to solve the basic problems of wireless identification by means of reflected power. A complementary article on the history of RFID can be found in Landt (2001).

Similar to radar technology, RFID is a multi-disciplinary technology which encompasses a variety of disciplines: (i) RF and microwave engineering, (ii) RF and digital integrated circuits, (iii) antenna design, and (iv) signal processing software and computer engineering. The latter encodes and decodes analog signals into meaningful codes for identification. According to Lai et al (2005), “The fact that RFID reading operation requires the combined interdisciplinary knowledge of RF circuits, antennas, propagation, scattering, system, middleware, server software, and business process engineering is so overwhelming that it is hard to find one single system integrator knowledgeable about them all. …. In view of the aforesaid situation, this present invention (RFID system) seeks to create and introduce novel technologies, namely redundant networked multimedia technology, auto-ranging technology, auto-planning technology, smart active antenna technology, plus novel RFID tag technology, to consolidate the knowledge of all these different disciplines into a comprehensive product family.”

Complete Chapter List

Search this Book:
Reset
Table of Contents
Foreword
Jack H. Winters
Acknowledgment
Chen Sun, Jun Cheng, Takashi Ohira
Chapter 1
Constantin Siriteanu, Steven D. Blostein
This chapter unifies the principles and analyses of conventional signal processing algorithms for receive-side smart antennas, and compares their... Sample PDF
Eigencombining: A Unified Approach to Antenna Array Signal Processing
$37.50
Chapter 2
Zhu Liang Yu, Meng Hwa Er, Wee Ser, Chen Huawei
In this chapter, we first review the background, basic principle and structure of adaptive beamformers. Since there are many robust adaptive... Sample PDF
Robust Adaptive Beamforming
$37.50
Chapter 3
Sheng Chen
Adaptive beamforming is capable of separating user signals transmitted on the same carrier frequency, and thus provides a practical means of... Sample PDF
Adaptive Beamforming Assisted ReceiverAdaptive Beamforming
$37.50
Chapter 4
Thomas Hunziker
Many common adaptive beamforming methods are based on a sample matrix inversion (SMI). The schemes can be applied in two ways. The sample covariance... Sample PDF
On the Employment of SMI Beamforming for Cochannel Interference Mitigation in Digital Radio
$37.50
Chapter 5
Hideki Ochiai, Patrick Mitran, H. Vincent Poor, Vahid Tarokh
In wireless sensor networks, the sensor nodes are often randomly situated, and each node is likely to be equipped with a single antenna. If these... Sample PDF
Random Array Theory and Collaborative Beamforming
$37.50
Chapter 6
W. H. Chin, C. Yuen
Space-time block coding is a way of introducing multiplexing and diversity gain in wireless systems equipped with multiple antennas. There are... Sample PDF
Advanced Space-Time Block Codes and Low Complexity Near Optimal Detection for Future Wireless Networks
$37.50
Chapter 7
Xiang-Gen Xia, Genyuan Wang, Pingyi Fan
Modulated codes (MC) are error correction codes (ECC) defined on the complex field and therefore can be naturally combined with an intersymbol... Sample PDF
Space-Time Modulated Codes for MIMO Channels with Memory
$37.50
Chapter 8
Javier Vía, Ignacio Santamaría, Jesús Ibáñez
This chapter analyzes the problem of blind channel estimation under Space-Time Block Coded transmissions. In particular, a new blind channel... Sample PDF
Blind Channel Estimation in Space-Time Block Coded Systems
$37.50
Chapter 9
Chen Sun, Takashi Ohira, Makoto Taromaru, Nemai Chandra Karmakar, Akifumi Hirata
In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the... Sample PDF
Fast Beamforming of Compact Array Antenna
$37.50
Chapter 10
Eddy Taillefer, Jun Cheng, Takashi Ohira
This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact... Sample PDF
Direction of Arrival Estimation with Compact Array Antennas: A Reactance Switching Approach
$37.50
Chapter 11
Santana Burintramart, Nuri Yilmazer, Tapan K. Sarkar, Magdalena Salazar-Palma
This chapter presents a concern regarding the nature of wireless communications using multiple antennas. Multi-antenna systems are mainly developed... Sample PDF
Physics of Multi-Antenna Communication Systems
$37.50
Chapter 12
MIMO Beamforming  (pages 240-263)
Qinghua Li, Xintian Eddie Lin, Jianzhong ("Charlie") Zhang
Transmit beamforming improves the performance of multiple-input multiple-output antenna system (MIMO) by exploiting channel state information (CSI)... Sample PDF
MIMO Beamforming
$37.50
Chapter 13
Biljana Badic, Jinho Choi
This chapter introduces joint beamforming (or precoding) and space-time coding for multiple input multiple output (MIMO) channels. First, we explain... Sample PDF
Joint Beamforming and Space-Time Coding for MIMO Channels
$37.50
Chapter 14
Zhendong Zhou, Branka Vucetic
This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically... Sample PDF
Adaptive MIMO Systems with High Spectral Efficiency
$37.50
Chapter 15
Joakim Jaldén, Björn Ottersten
This chapter takes a closer look at a class of MIMO detention methods, collectively referred to as relaxation detectors. These detectors provide... Sample PDF
Detection Based on Relaxation in MIMO Systems
$37.50
Chapter 16
Wolfgang Utschick, Pedro Tejera, Christian Guthy, Gerhard Bauch
This chapter discusses four different optimization problems of practical importance for transmission in point to multipoint networks with a multiple... Sample PDF
Transmission in MIMO OFDM Point to Multipoint Networks
$37.50
Chapter 17
Salman Durrani, Marek E. Bialkowski
This chapter discusses the use of smart antennas in Code Division Multiple Access (CDMA) systems. First, we give a brief overview of smart antenna... Sample PDF
Smart Antennas for Code Division Multiple Access Systems
$37.50
Chapter 18
Aimin Sang, Guosen Yue, Xiaodong Wang, Mohammad Madihian
In this chapter, we consider a cellular downlink packet data system employing the space-time block coded (STBC) multiple- input-multiple-output... Sample PDF
Cross-Layer Performance of Scheduling and Power Control Schemes in Space-Time Block Coded Downlink Packet Systems
$37.50
Chapter 19
Yimin Zhang, Xin Li, Moeness G. Amin
This chapter introduces the concept of multi-beam antenna (MBA) in mobile ad hoc networks and the recent advances in the research relevant to this... Sample PDF
Mobile Ad Hoc Networks Exploiting Multi-Beam Antennas
$37.50
Chapter 20
Toru Hashimoto, Tomoyuki Aono
The technology of generating and sharing the key as the representative application of smart antennas is introduced. This scheme is based on the... Sample PDF
Key Generation System Using Smart Antenna
$37.50
Chapter 21
Nemai Chandra Karmakar
Various smart antennas developed for automatic radio frequency identification (RFID) readers are presented. The main smart antennas types of RFID... Sample PDF
Smart Antennas for Automatic Radio Frequency Identification Readers
$37.50
Chapter 22
Konstanty Bialkowski, Adam Postula, Amin Abbosh, Marek Bialkowski
This chapter introduces the concept of Multiple Input Multiple Output (MIMO) wireless communication system and the necessity to use a testbed to... Sample PDF
Field Programmable Gate Array Based Testbed for Investigating Multiple Input Multiple Output Signal Transmission in Indoor Environments
$37.50
Chapter 23
Masahiro Watanabe, Sadao Obana, Takashi Watanabe
Recent studies on directional media access protocols (MACs) using smart antennas for wireless ad hoc networks have shown that directional MACs... Sample PDF
Ad Hoc Networks Testbed Using a Practice Smart Antenna with IEEE802.15.4 Wireless Modules
$37.50
Chapter 24
Monthippa Uthansakul, Marek E. Bialkowski
This chapter introduces the alternative approach for wideband smart antenna in which the use of tapped-delay lines and frequency filters are... Sample PDF
Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters
$37.50
Chapter 25
Jun Cheng, Eddy Taillefer, Takashi Ohira
Three working modes, omni-, sector and adaptive modes, for a compact array antenna are introduced. The compact array antenna is an electronically... Sample PDF
Omni-, Sector, and Adaptive Modes of Compact Array Antenna
$37.50
About the Contributors