Space-Time Modulated Codes for MIMO Channels with Memory

Space-Time Modulated Codes for MIMO Channels with Memory

Xiang-Gen Xia (University of Delaware, USA), Genyuan Wang (Cisco Systems, USA) and Pingyi Fan (Tsinghua University, China)
DOI: 10.4018/978-1-59904-988-5.ch007
OnDemand PDF Download:


Modulated codes (MC) are error correction codes (ECC) defined on the complex field and therefore can be naturally combined with an intersymbol interference (ISI) channel. It has been previously proved that for any finite tap ISI channel there exist MC with coding gain comparing to the uncoded AWGN channel. In this chapter, we first consider space-time MC for memory channels, such as multiple transmit and receive antenna systems with ISI. Similar to MC for single antenna systems, the space-time MC can be also naturally combined with a multiple antenna system with ISI, which provides the convenience of the study. Some lower bounds on the capacities C and the information rates Ii.i.d of the MC coded systems are presented. We also introduce an MC coded zero-forcing decision feedback equalizer (ZF-DFE) where the channel is assumed known at both the transmitter and the receiver. The optimal MC design based on the ZF-DFE are presented.
Chapter Preview


Space-time coding for multiple transmit and receive antenna communication systems has recently attracted considerable attentions, see for example (Eittneben (1993), Winters, Salz, Gitlin (1994), & Telatar (1995), Foschini & Gans (1998), Tarokh, Seshadri, & Calderbank (1998), Tarokh, Naguib, Seshadri, & Calderbank (1999)), which is mainly because of the significant capacity increase from the diversities. Such studies include, for example, the capacity studies (Telatar (1995), Foschini & Gans (1998), Winters, Salz, Gitlin (1994)), space-time trellis coded modulation (TCM) schemes (Tarokh, Seshadri, & Calderbank (1998), Tarokh, Naguib, Seshadri, & Calderbank (1999)), and the combination of the space time coding and signal processing (Tarokh, Seshadri, & Calderbank (1998), Tarokh, Naguib, Seshadri, & Calderbank (1999)). Most studies for such systems so far are for memoryless channels that may fit slow fading environment well, where all the paths from different transmit and receive antennas are assumed constants and treated as independent random variables. A recent study on multiple transmit and receive antenna systems with memory can be found in (Ariyavisitakul, Winters, & Lee (1999)), where no space-time coding was considered.

In applications, MIMO-OFDM has been considered to be one of the best choices in the next generation of wireless communications. IEEE 802.16e has received some proposals on MIMO precoding with limited feedbacks (Kambourov (2006), Zhang et al (2004)). In MIMO-OFDMA systems, multiuser precoding with limited number of users has been proposed to increase the system capacity of users (Liu & Zhang (2007)). In the literature, there has been a lot of works focusing on the precoding techniques. The main reason is that if the wireless channels vary relatively slow and can be predicated or estimated by some methods in a relatively short time slot, the estimation and/or the prediction of the channel characteristics can be kept a relatively high accuracy when employing in the subsequent time slots. In this case, the precoding method can be used to reduce the effect of the multiuser interference and the channel fading, so that the system capacity can be greatly improved.

In this chapter, we are interested in multiple transmit and receive antenna channels with memory, where there are intersymbol interferences (ISI) for each pair of transmit and receive antennas. Note that, unlike those in the discussions in wireless ad hoc networks, we would not employ the statistics model to characterize the intersymbol interference but the algebraic model. Here we assume that all the ISI channels for all the different pairs are known at both the transmitter and the receiver. This assumption might be too strong for wireless communications. We have two reasons for such interest. The first reason is that the channel model here may fit some communication systems, such as multi-head and multi-track recording systems, such as (Soljanin & Georghiades (1995)), where there are ISI. The second reason is that, although the following study is based on the knowledge of all the ISI channels, the generalization of the study to unknown ISI channels might be possible in the WiMAX or some with fixed MIMO-OFDMA system.

Complete Chapter List

Search this Book:
Table of Contents
Jack H. Winters
Chen Sun, Jun Cheng, Takashi Ohira
Chapter 1
Constantin Siriteanu, Steven D. Blostein
This chapter unifies the principles and analyses of conventional signal processing algorithms for receive-side smart antennas, and compares their... Sample PDF
Eigencombining: A Unified Approach to Antenna Array Signal Processing
Chapter 2
Zhu Liang Yu, Meng Hwa Er, Wee Ser, Chen Huawei
In this chapter, we first review the background, basic principle and structure of adaptive beamformers. Since there are many robust adaptive... Sample PDF
Robust Adaptive Beamforming
Chapter 3
Sheng Chen
Adaptive beamforming is capable of separating user signals transmitted on the same carrier frequency, and thus provides a practical means of... Sample PDF
Adaptive Beamforming Assisted ReceiverAdaptive Beamforming
Chapter 4
Thomas Hunziker
Many common adaptive beamforming methods are based on a sample matrix inversion (SMI). The schemes can be applied in two ways. The sample covariance... Sample PDF
On the Employment of SMI Beamforming for Cochannel Interference Mitigation in Digital Radio
Chapter 5
Hideki Ochiai, Patrick Mitran, H. Vincent Poor, Vahid Tarokh
In wireless sensor networks, the sensor nodes are often randomly situated, and each node is likely to be equipped with a single antenna. If these... Sample PDF
Random Array Theory and Collaborative Beamforming
Chapter 6
W. H. Chin, C. Yuen
Space-time block coding is a way of introducing multiplexing and diversity gain in wireless systems equipped with multiple antennas. There are... Sample PDF
Advanced Space-Time Block Codes and Low Complexity Near Optimal Detection for Future Wireless Networks
Chapter 7
Xiang-Gen Xia, Genyuan Wang, Pingyi Fan
Modulated codes (MC) are error correction codes (ECC) defined on the complex field and therefore can be naturally combined with an intersymbol... Sample PDF
Space-Time Modulated Codes for MIMO Channels with Memory
Chapter 8
Javier Vía, Ignacio Santamaría, Jesús Ibáñez
This chapter analyzes the problem of blind channel estimation under Space-Time Block Coded transmissions. In particular, a new blind channel... Sample PDF
Blind Channel Estimation in Space-Time Block Coded Systems
Chapter 9
Chen Sun, Takashi Ohira, Makoto Taromaru, Nemai Chandra Karmakar, Akifumi Hirata
In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the... Sample PDF
Fast Beamforming of Compact Array Antenna
Chapter 10
Eddy Taillefer, Jun Cheng, Takashi Ohira
This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact... Sample PDF
Direction of Arrival Estimation with Compact Array Antennas: A Reactance Switching Approach
Chapter 11
Santana Burintramart, Nuri Yilmazer, Tapan K. Sarkar, Magdalena Salazar-Palma
This chapter presents a concern regarding the nature of wireless communications using multiple antennas. Multi-antenna systems are mainly developed... Sample PDF
Physics of Multi-Antenna Communication Systems
Chapter 12
MIMO Beamforming  (pages 240-263)
Qinghua Li, Xintian Eddie Lin, Jianzhong ("Charlie") Zhang
Transmit beamforming improves the performance of multiple-input multiple-output antenna system (MIMO) by exploiting channel state information (CSI)... Sample PDF
MIMO Beamforming
Chapter 13
Biljana Badic, Jinho Choi
This chapter introduces joint beamforming (or precoding) and space-time coding for multiple input multiple output (MIMO) channels. First, we explain... Sample PDF
Joint Beamforming and Space-Time Coding for MIMO Channels
Chapter 14
Zhendong Zhou, Branka Vucetic
This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically... Sample PDF
Adaptive MIMO Systems with High Spectral Efficiency
Chapter 15
Joakim Jaldén, Björn Ottersten
This chapter takes a closer look at a class of MIMO detention methods, collectively referred to as relaxation detectors. These detectors provide... Sample PDF
Detection Based on Relaxation in MIMO Systems
Chapter 16
Wolfgang Utschick, Pedro Tejera, Christian Guthy, Gerhard Bauch
This chapter discusses four different optimization problems of practical importance for transmission in point to multipoint networks with a multiple... Sample PDF
Transmission in MIMO OFDM Point to Multipoint Networks
Chapter 17
Salman Durrani, Marek E. Bialkowski
This chapter discusses the use of smart antennas in Code Division Multiple Access (CDMA) systems. First, we give a brief overview of smart antenna... Sample PDF
Smart Antennas for Code Division Multiple Access Systems
Chapter 18
Aimin Sang, Guosen Yue, Xiaodong Wang, Mohammad Madihian
In this chapter, we consider a cellular downlink packet data system employing the space-time block coded (STBC) multiple- input-multiple-output... Sample PDF
Cross-Layer Performance of Scheduling and Power Control Schemes in Space-Time Block Coded Downlink Packet Systems
Chapter 19
Yimin Zhang, Xin Li, Moeness G. Amin
This chapter introduces the concept of multi-beam antenna (MBA) in mobile ad hoc networks and the recent advances in the research relevant to this... Sample PDF
Mobile Ad Hoc Networks Exploiting Multi-Beam Antennas
Chapter 20
Toru Hashimoto, Tomoyuki Aono
The technology of generating and sharing the key as the representative application of smart antennas is introduced. This scheme is based on the... Sample PDF
Key Generation System Using Smart Antenna
Chapter 21
Nemai Chandra Karmakar
Various smart antennas developed for automatic radio frequency identification (RFID) readers are presented. The main smart antennas types of RFID... Sample PDF
Smart Antennas for Automatic Radio Frequency Identification Readers
Chapter 22
Konstanty Bialkowski, Adam Postula, Amin Abbosh, Marek Bialkowski
This chapter introduces the concept of Multiple Input Multiple Output (MIMO) wireless communication system and the necessity to use a testbed to... Sample PDF
Field Programmable Gate Array Based Testbed for Investigating Multiple Input Multiple Output Signal Transmission in Indoor Environments
Chapter 23
Masahiro Watanabe, Sadao Obana, Takashi Watanabe
Recent studies on directional media access protocols (MACs) using smart antennas for wireless ad hoc networks have shown that directional MACs... Sample PDF
Ad Hoc Networks Testbed Using a Practice Smart Antenna with IEEE802.15.4 Wireless Modules
Chapter 24
Monthippa Uthansakul, Marek E. Bialkowski
This chapter introduces the alternative approach for wideband smart antenna in which the use of tapped-delay lines and frequency filters are... Sample PDF
Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters
Chapter 25
Jun Cheng, Eddy Taillefer, Takashi Ohira
Three working modes, omni-, sector and adaptive modes, for a compact array antenna are introduced. The compact array antenna is an electronically... Sample PDF
Omni-, Sector, and Adaptive Modes of Compact Array Antenna
About the Contributors