Technical Risk Management

Technical Risk Management

Pete Hylton (Indiana University Purdue University Indianapolis, USA)
DOI: 10.4018/978-1-60566-400-2.ch018
OnDemand PDF Download:


In today’s highly competitive industrial environment, many high-tech businesses are using Technical Risk Management (TRM) in their engineering design programs as a means of improving the chances of success. TRM allows program mangers to pinpoint potential failure modes of a project early in the process, so that corrective actions can be taken in the most effective manner. TRM also allows managers to appropriately prioritize program tasks so as to achieve optimum use of available technical resources. TRM requires that a methodology of practices and processes be implemented on an ongoing basis. These processes identify, evaluate, mitigate, and manage technical risks affecting program success. This chapter will discuss implementation of the TRM process and provide a simple example to show how the process works.
Chapter Preview


A recent risk analysis survey, conducted in the aerospace industry, stated, “Increasingly, Government customers and Industry contractors seek better methods to identify and manage technical, schedule, and cost risk.” (Black, 2001, p. 1) The survey documented that 39% of industry representatives surveyed expect their technical staff to play the major role in risk management, whereas 33% placed responsibility for risk management on the cost estimators, 14% on management and 14% elsewhere. Clearly the technical staff in aerospace firms is expected to participate heavily in the management of technical risks. The medical device industry is another industry with this expectation. Kaye and Crowley (2000) have described the use of TRM in that industry, saying “Risk Management is a systematic application of policies, procedures, and practices to the analysis, evaluation, and mitigation of risks. It is a key component of quality management systems, and is a central requirement of the implementation of design controls in the Quality Systems Regulation.” (p. 8) Software development engineering is yet another arena where the importance of managing risk has been recognized. Kendall (2007) has stated that at least 25% of software design projects are cancelled before completion and 89% overrun budget. Based on this, the report goes on to say “It is no surprise, then, that one of the drivers in the evolution of software engineering, as a discipline, has been the desire to indentify reliable, quantifiable ways to manage software development risks.” (p. 1)

For U.S. Department of Defense programs, guidelines for estimating the probability of occurrence and the magnitude of failure impact are published as part of military standard MIL-STD-882, System Safety Program Requirements, which states “A formal safety program that stresses early hazard identification and elimination or reduction of associated risk to a level acceptable to the managing activity is the principle contribution to effective system safety.” (U.S. DoD, 1984, p. 2) The TRM concept is required for virtually all new military contracts. Plans are frequently subject to monthly tracking by program-wide risk review boards comprised of members of the technical staff of both the vendor and the contracting agency. Additional government agencies are adopting this practice and many commercial customers contracting for new designs in high-tech industries are instituting internal requirements for TRM to be part of every program.

Key Terms in this Chapter

Probability of Occurrence: A value assigned to the likelihood that a particular failure will occur. This may be quantitatively assigned using approaches like those from probabilistic design analysis, or may be qualitative based on the instincts and experience of a design team.

Risk Ranking: The phase of a risk management process where all identified risks are assessed either quantitatively or qualitatively, to ascertain which ones have the highest likelihood of occurrence and which ones have the greatest consequence of occurrence so as to rank the risks in overall order of importance.

Consequence of Occurrence: A measure of the negative result associated with the occurrence of a failure mode identified in a risk analysis study.

Risk Management: A process to identify and quantify sources of technical risks and their program impacts and find ways to avoid or control them. (Babcock, 2007, p. 217)

Probabilistic Design Analysis: A design approach which attempts to assign numerical, quantitative probabilities to the likelihood of a failure occurring. This process uses the theories of statistical analysis and the variance of statistically quantifiable terms to calculate such numeric probabilities.

Technical Risk: Any occurrence which could negatively impact the result of a program which could be mitigated by application of technical skills resulting in an improved design of a component, system, or process, thereby reducing the potential impact on the program.

Risk Reduction Plan: A plan, created as part of a risk management process, wherein steps are determined which will address a particular program risk so as to reduce either its likelihood of occurrence, or the consequence of its occurrence, or both, such that there is a reduction in its potential impact to the program.

Risk Identification: The phase of a risk management process where identification is made of all possible risks which could potentially impact the result of a program.

Impact of Occurrence: The quantitative or qualitative measurement of the consequence occurring when a failure mode is realized.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Robert K. Hiltbrand
Terry T. Kidd
Terry T. Kidd
Chapter 1
James W. Price Jr., Pamila Dembla
As exploratory research, the chapter’s aim is to assess if Sun-Tzu’s application of Taoist principles are applicable to the problem domain of... Sample PDF
The Tao To Understanding Enterprise It Project Complexity: Sun-Tzu's Five Factors Revisited
Chapter 2
A. J. Gilbert Silvius
This chapter describes a study into the expected development of the competences of the project manager in the year 2027. The study was performed... Sample PDF
Project Management 2027: The Future of Project Management
Chapter 3
Gregory J. Skulmoski, Francis T. Hartman
The purpose of this research was to investigate the soft competencies by project phase that IT project managers, hybrid and technical team members... Sample PDF
The Progression Towards Project Management Competence
Chapter 4
Ralf Müller
This chapter addresses project managers’ leadership styles, mainly from the perspective of technology projects. It starts by defining and outlining... Sample PDF
Leadership in Technology Project Management
Chapter 5
Melanie S. Karas, Mahesh S. Raisinghani, Kerry S. Webb
A project manager’s role on any project goes far beyond task-related deliverables. Although the project manager must be able to effectively manage... Sample PDF
The Importance of Leadership in Project Management
Chapter 6
Jaby Mohammed
This chapter introduces the concept of technology management by objectives. Technology is one of the fastest moving elements in the 21st Century... Sample PDF
Technology Management by Objectives (TMO)
Chapter 7
Gary Pan
The goal of any product is to be used. In a very real sense, people judge the success or failure of any product by the extent to which it is used by... Sample PDF
Examining Stakeholders' Roles in Influencing IT Project Cancellation Decisions
Chapter 8
Daniel W. Surry
This chapter will discuss more than 20 system development life cycles (SDLC) found in the Information Technology project management arena, whereby... Sample PDF
Bringing the User into the Project Development Process
Chapter 9
Evon M. O. Abu-Taieh, Asim A. El Sheikh, Jeihan M. Abu-Tayeh, Maha T. El-Mahied
This chapter uses the Diffusion of Innovations (DOI) theory and examines a business case, highlighting certain gaps in the theory. First, confusion... Sample PDF
Information Technology Projects System Development Life Cycles: Comparative Study
Chapter 10
Francisco Chia Cua, Tony C. Garrett
This chapter introduces the Firm-Level Value Creation Model as a means of planning Information Systems projects based on their potential for... Sample PDF
Analyzing Diffusion and Value Creation Dimensions of a Business Case of Replacing Enterprise Systems
Chapter 11
Otavio Prospero Sanchez, Alberto Luiz Albertin
In this chapter the authors investigate the management of service innovation projects; can ICT based service innovation be facilitated by... Sample PDF
IT Project Planning based on Business Value Generation
Chapter 12
Bendik Bygstad, Gjermund Lanestedt
This chapter provides a framework for technology project implementation in systems where the human is an integral element of the completed project.... Sample PDF
Managing ICT Based Service Innovation
Chapter 13
Katy E. Ellis
Project management is a carefully planned, organized effort to manage the resources in order to successfully accomplish specific project goals and... Sample PDF
Employee Preparation, Participation, and Performance
Chapter 14
Jaby Mohammed, Ali Alavizadeh
This chapter provides a fundamental yet comprehensive coverage of quality management. Bringing managers and engineers the most up-to-date quality... Sample PDF
Quality Assurance in Project Management
Chapter 15
Sohail Anwar
Project management is a carefully planned, organized effort to manage the resources in order to successfully accomplish specific project goals and... Sample PDF
Quality Management and Control
Chapter 16
Dawn M. Owens, Deepak Khazanchi
Successful implementation of IT (information technology) projects is a critical strategic and competitive necessity for firms in all industrial... Sample PDF
Software Quality Assurance
Chapter 17
Fayez Ahmad Albadri
An overwhelming number of Information Technology (IT) projects experience persistent problems and failures. This chapter reflects on some of the... Sample PDF
IPRM: The Integrated Project Risk Model
Chapter 18
Technical Risk Management  (pages 283-294)
Pete Hylton
In today’s highly competitive industrial environment, many high-tech businesses are using Technical Risk Management (TRM) in their engineering... Sample PDF
Technical Risk Management
Chapter 19
Lauren Fancher
IT projects across all sectors are relying on more iterative methodologies that can employ early and frequent assessment and evaluation processes in... Sample PDF
Early, Often, and Repeat: Assessment and Evaluation Methodology for Ensuring Stakeholder Satisfaction with Information Technology Projects
Chapter 20
Chad J. Cray
Considering the high failure rate of information technology (IT) projects over the last 40 years, project managers should use all the tools at their... Sample PDF
A Needle in a Haystack: Choosing the Right Development Methodology for IT Projects
Chapter 21
Mysore Narayanan
In this chapter, the author describes how one can implement and incorporate creative techniques to design, develop, document and disseminate a... Sample PDF
Project Management Assessment Methods
Chapter 22
Mario Vanhoucke
It is well-known that well managed and controlled projects are more likely to be delivered on time and within budget. The construction of a... Sample PDF
Static and Dynamic Determinants of Earned Value Based Time Forecast Accuracy
Chapter 23
Michele De Lorenzi
This chapter presents a technology exploration process designed to support service innovation for information and communication technologies in a... Sample PDF
Technology Exploration Process: From Technology to New Services
Chapter 24
Henryk R. Marcinkiewicz
Three models structure the planning for technology integration into instruction. Institutional needs are assessed for three dimensions suggested in... Sample PDF
Planning for Integrating Technology
Chapter 25
Michael Crow
Kansas State University has ensured greatly increased academic involvement in the implementation of its new student information system through the... Sample PDF
University Task Force Deepens Academic Involvement in ERP System
Chapter 26
Joni A. Amorim, Carlos Machado, Rosana G.S. Miskulin, Mauro S. Miskulin
The production of quality educational multimedia content involves both its publication and its use, considering aspects ranging from metadata... Sample PDF
Production, Publication, and Use of Educational Multimedia Content in Brazil: Challenges and Opportunities in Real World Technology Projects
Chapter 27
Hasan Tinmaz
Technology planning is an indispensable activity for all higher education institutions nowadays. The major purpose of the technology planning is to... Sample PDF
Instructional Technology Plans for Higher Education Institutions
Chapter 28
Patricia McGee, Veronica Diaz
The rapid proliferation of e-learning tools that offer low or no cost investment and are not housed on institutional servers, has made it very... Sample PDF
Shifting from Classroom to Online Delivery
Chapter 29
Bimal P. Nepal, Leslie Monplaisir
Original equipment manufacturers (OEMs) in automotive industry are faced with the conflicting goals of creating vehicles with higher reliability... Sample PDF
Lean and Global Product Development in Auto Industry
Chapter 30
Debra D. Orosbullard
The business world is running at a faster pace than ever before. Globalization has partnered the world and new ways of doing business to meet... Sample PDF
Future Trends: Global Projects & Virtual Teaming
Chapter 31
Geoffrey Corb, Stephen Hellen
Social networking technologies—such as Wikis, blogs and instant messaging—are increasingly being employed in business settings to support... Sample PDF
Wiki-enabled Technology Management
Chapter 32
Owen G. McGrath
Higher education IT project managers have always relied on user activity data as logged in one form or another. Summarized counts of users and... Sample PDF
Mining User Activity Data In Higher Education Open Systems: Trends, Challenges, and Possibilities
About the Contributors