The Theoretical Framework of Cognitive Informatics

The Theoretical Framework of Cognitive Informatics

Yingxu Wang (University of Calgary, Canada)
Copyright: © 2009 |Pages: 27
DOI: 10.4018/978-1-60566-170-4.ch001
OnDemand PDF Download:


Cognitive Informatics (CI) is a transdisciplinary enquiry of the internal information processing mechanisms and processes of the brain and natural intelligence shared by almost all science and engineering disciplines. This chapter presents an intensive review of the new field of CI. The structure of the theoretical framework of CI is described, encompassing the Layered Reference Model of the Brain (LRMB), the OAR model of information representation, Natural Intelligence (NI) vs. Artificial Intelligence (AI), Autonomic Computing (AC) vs. imperative computing, CI laws of software, the mechanism of human perception processes, the cognitive processes of formal inferences, and the formal knowledge system. Three types of new structures of mathematics, Concept Algebra (CA), Real-Time Process Algebra (RTPA), and System Algebra (SA), are created to enable rigorous treatment of cognitive processes of the brain as well as knowledge representation and manipulation in a formal and coherent framework. A wide range of applications of CI in cognitive psychology, computing, knowledge engineering, and software engineering has been identified and discussed.
Chapter Preview


The development of classical and contemporary informatics, the cross fertilization between computer science, systems science, cybernetics, computer/software engineering, cognitive science, knowledge engineering, and neuropsychology, has led to an entire range of extremely interesting new research field known as Cognitive Informatics [Wang, 2002a; Wang et al., 2002; Wang, 2003a/b; Wang, 2006b; Wang and Kinsner, 2006]. Informatics is the science of information that studies the nature of information, it’s processing, and ways of transformation between information, matter, and energy.

Definition 1.Cognitive Informatics (CI) is a transdisciplinary enquiry of cognitive and information sciences that investigates into the internal information processing mechanisms and processes of the brain and natural intelligence, and their engineering applications via an interdisciplinary approach.

In many disciplines of human knowledge, almost all of the hard problems yet to be solved share a common root in the understanding of the mechanisms of natural intelligence and the cognitive processes of the brain. Therefore, CI is a discipline that forges links between a number of natural science and life science disciplines with informatics and computing science.

The structure of the theoretical framework of CI is described in Figure 1, which covers the Information-Matter-Energy (IME) model [Wang, 2003b], the Layered Reference Model of the Brain (LRMB) [Wang et al., 2006], the Object-Attribute-Relation (OAR) model of information representation in the brain [Wang, 2006h; Wang and Wang, 2006], the cognitive informatics model of the brain [Wang et al., 2003; Wang and Wang, 2006], Natural Intelligence (NI) [Wang, 2003b], Autonomic Computing (AC) [Wang, 2004], Neural Informatics (NeI) [Wang, 2002a; Wang, 2003b; Wang, 2006b], CI laws of software [Wang, 2006f], the mechanisms of human perception processes [Wang, 2005a], the cognitive processes of formal inferences [Wang, 2005c], and the formal knowledge system [Wang, 2006g].

Figure 1.

The theoretical framework of cognitive informatics (CI)CI

In this chapter, the theoretical framework of CI is explained in Section 2. Three structures of new descriptive mathematics such as Concept Algebra (CA), Real-Time Process Algebra (RTPA), and System Algebra (SA) are introduced in Section 3 in order to rigorously deal with knowledge and cognitive information representation and manipulation in a formal and coherent framework. Applications of CI are discussed in Section 4, which covers cognitive computing, knowledge engineering, and software engineering. Section 5 draws conclusions on the theories of CI, the contemporary mathematics for CI, and their applications.


The Fundamental Theories Of Ci

The fundamental theories of CI encompass ten transdisciplinary areas and fundamental models, T1 through T10, as identified in Figure 1. This section presents an intensive review of the theories developed in CI, which form a foundation for exploring the natural intelligence and their applications in brain science, neural informatics, computing, knowledge engineering, and software engineering.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Yingxu Wang
Chapter 1
Yingxu Wang
Cognitive Informatics (CI) is a transdisciplinary enquiry of the internal information processing mechanisms and processes of the brain and natural... Sample PDF
The Theoretical Framework of Cognitive Informatics
Chapter 2
Withold Kinsner
This chapter provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition, and... Sample PDF
Is Entropy Suitable to Characterize Data and Signals for Cognitive Informatics?
Chapter 3
Ismael Rodríguez, Manuel Núñez, Fernando Rubio
Finite State Machines (FSM) are formalisms that have been used for decades to describe the behavior of systems. They can also provide an intelligent... Sample PDF
Cognitive Processes by using Finite State Machines
Chapter 4
Yingxu Wang
An interactive motivation-attitude theory is developed based on the Layered Reference Model of the Brain (LRMB) and the Object-Attribute-Relation... Sample PDF
On the Cognitive Processes of Human Perception with Emotions, Motivations, and Attitudes
Chapter 5
Qingyong Li, Zhiping Shi, Zhongzhi Shi
Sparse coding theory demonstrates that the neurons in the primary visual cortex form a sparse representation of natural scenes in the viewpoint of... Sample PDF
A Selective Sparse Coding Model with Embedded Attention Mechanism
Chapter 6
Yingxu Wang
Theoretical research is predominately an inductive process, while applied research is mainly a deductive process. Both inference processes are based... Sample PDF
The Cognitive Processes of Formal Inferences
Chapter 7
Douglas Griffith, Frank L. Greitzer
The purpose of this article is to re-address the vision of human-computer symbiosis as originally expressed by J.C.R. Licklider nearly a... Sample PDF
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction
Chapter 8
Ray E. Jennings
Although linguistics may treat languages as a syntactic and/or semantic entity that regulates both language production and comprehension, this... Sample PDF
Language, Logic, and the Brain
Chapter 9
Yingxu Wang, Guenther Ruhe
Decision making is one of the basic cognitive processes of human behaviors by which a preferred option or a course of actions is chosen from among a... Sample PDF
The Cognitive Process of Decision Making
Chapter 10
Tiansi Dong
This chapter proposes a commonsense understanding of distance and orientation knowledge between extended objects, and presents a formal... Sample PDF
A Commonsense Approach to Representing Spatial Knowledge Between Extended Objects
Chapter 11
Natalia López, Manuel Núñez, Fernando L. Pelayo
In this chapter we present the formal language, stochastic process algebra (STOPA), to specify cognitive systems. In addition to the usual... Sample PDF
A Formal Specification of the Memorization Process
Chapter 12
Yingxu Wang
Autonomic computing (AC) is an intelligent computing approach that autonomously carries out robotic and interactive applications based on goal- and... Sample PDF
Theoretical Foundations of Autonomic Computing
Chapter 13
Witold Kinsner
Numerous attempts are being made to develop machines that could act not only autonomously, but also in an increasingly intelligent and cognitive... Sample PDF
Towards Cognitive Machines: Multiscale Measures and Analysis
Chapter 14
Amar Ramdane-Cherif
Cognitive approach through the neural network (NN) paradigm is a critical discipline that will help bring about autonomic computing (AC). NN-related... Sample PDF
Towards Autonomic Computing: Adaptive Neural Network for Trajectory Planning
Chapter 15
Lee Flax
We give an approach to cognitive modelling, which allows for richer expression than the one based simply on the firing of sets of neurons. The... Sample PDF
Cognitive Modelling Applied to Aspects of Schizophrenia and Autonomic Computing
Chapter 16
Yan Zhao, Yiyu Yao
Classification is one of the main tasks in machine learning, data mining, and pattern recognition. Compared with the extensively studied automation... Sample PDF
Interactive Classification Using a Granule Network
Chapter 17
Mehdi Najjar, André Mayers
Encouraging results of last years in the field of knowledge representation within virtual learning environments confirms that artificial... Sample PDF
A Cognitive Computational Knowledge Representation Theory
Chapter 18
Du Zhang
A crucial component of an intelligent system is its knowledge base that contains knowledge about a problem domain. Knowledge base development... Sample PDF
A Fixpoint Semantics for Rule-Base Anomalies
Chapter 19
Christine W. Chan
This chapter presents a method for ontology construction and its application in developing ontology in the domain of natural gas pipeline... Sample PDF
Development of an Ontology for an Industrial Domain
Chapter 20
Václav Rajlich, Shaochun Xu
This article explores the non-monotonic nature of the programmer learning that takes place during incremental program development. It uses a... Sample PDF
Constructivist Learning During Software Development
Chapter 21
Witold Kinsner
Many scientific chapters treat the diversity of fractal dimensions as mere variations on either the same theme or a single definition. There is a... Sample PDF
A Unified Approach to Fractal Dimensions
Chapter 22
Du Zhang, Witold Kinsner, Jeffrey Tsai, Yingxu Wang, Philip Sheu, Taehyung Wang
The 2005 IEEE International Conference on Cognitive Informatics (ICCI’05) was held during August 8th to 10th 2005 on the campus of University of... Sample PDF
Cognitive Informatics: Four Years in Practice
Chapter 23
Yiyu Yao, Zhongzhi Shi, Yingxu Wang, Witold Kinsner, Yixin Zhong, Guoyin Wang
Cognitive informatics (CI) is a cutting-edge and multidisciplinary research area that tackles the fundamental problems shared by modern informatics... Sample PDF
Toward Cognitive Informatics and Cognitive Computers: A Report on IEEE ICCI'06
About the Contributors