Transmission in MIMO OFDM Point to Multipoint Networks

Transmission in MIMO OFDM Point to Multipoint Networks

Wolfgang Utschick (Technische Universität München, Germany), Pedro Tejera (Technische Universität München, Germany), Christian Guthy (Technische Universität München, Germany) and Gerhard Bauch (DOCOMO Communications Laboratories Europe GmbH, Germany)
DOI: 10.4018/978-1-59904-988-5.ch016
OnDemand PDF Download:
$37.50

Abstract

This chapter discusses four different optimization problems of practical importance for transmission in point to multipoint networks with a multiple input transmitter and multiple output receivers. Existing solutions to each of the problems are adapted to a multi-carrier transmission scheme by considering the special structure of the resulting space-frequency channels. Furthermore, for each of the problems, suboptimum approaches are presented that almost achieve optimum performance and, at the same time, do not have the iterative character of optimum algorithms, i.e., they deliver a solution in a fixed number of steps. The purpose of this chapter is to give an overview on optimum design of point to multipoint networks from an information theoretic perspective and to introduce non-iterative algorithms that are a good practical alternative to the sometimes costly iterative algorithms that achieve optimality.
Chapter Preview
Top

Introduction

Increasing demand for broadband services calls for higher data rates in future communication systems. For instance, in fourth generation wireless communication systems data rates of several Mb/s in high mobility and 1 Gb/s in low mobility scenarios are expected (Tachikawa, 2003). Particularly challenging is the accomplishment of this goals in point to multipoint networks. In such networks, an access point transmits independent information to a number of users that compete for the available system resources, i.e., transmission time, transmit power, spectrum and space. Thus, the challenge consists in providing a satisfactory service to all users by making an adequate allocation of resources. Prominent examples of point to multipoint networks are the downlink of wireless local area networks, the downlink of mobile networks and the downstream direction of wired or wireless last mile access networks. Spectral limitations, due to scarcity of spectrum in wireless systems and narrow bandwidths of customary copper wire in the last mile, together with the general frequency selectivity of wideband channels are two major barriers to be overcome in the way to data rates beyond those of current communication systems. Sending information over multiple inputs at the transmitter and retrieving information from multiple outputs at the receiver has the potential to increase the amount of information reliably transmitted per time and frequency unit, i.e., it allows a more efficient use of the spectrum (Foschini, 1998).1 On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) is able to transform the frequency selective channel into a set of non-interfering frequency flat channels, which enormously simplifies equalization at the receiver (Raleigh, 1998). Hence, combination of MIMO and OFDM seems to be key for implementation of future high rate communication systems (Sampath, 2002).In this chapter we describe MIMO OFDM transmission schemes for point to multipoint networks that achieve optimum rates, that is, rate vectors at the boundary of the capacity region. Computation of optimum transmit parameters is performed by means of iterative algorithms involving a complexity that strongly depends on the a priori unknown number of iterations required to reach convergence. In addition, the optimum solution allocates interfering spatial dimensions to users, which makes it necessary to inform each user about the statistics of the interference that it receives. For each transmission scheme suboptimum allocation algorithms are presented that are able to closely approach performance of optimum approaches and exhibit two crucial advantages. Computation of optimum transmit parameters requires a complexity similar to that of only one iteration of the optimum approaches and users are assigned decoupled spatial dimensions, which makes possible the reduction of the required signaling overhead.

Complete Chapter List

Search this Book:
Reset
Table of Contents
Foreword
Jack H. Winters
Acknowledgment
Chen Sun, Jun Cheng, Takashi Ohira
Chapter 1
Constantin Siriteanu, Steven D. Blostein
This chapter unifies the principles and analyses of conventional signal processing algorithms for receive-side smart antennas, and compares their... Sample PDF
Eigencombining: A Unified Approach to Antenna Array Signal Processing
$37.50
Chapter 2
Zhu Liang Yu, Meng Hwa Er, Wee Ser, Chen Huawei
In this chapter, we first review the background, basic principle and structure of adaptive beamformers. Since there are many robust adaptive... Sample PDF
Robust Adaptive Beamforming
$37.50
Chapter 3
Sheng Chen
Adaptive beamforming is capable of separating user signals transmitted on the same carrier frequency, and thus provides a practical means of... Sample PDF
Adaptive Beamforming Assisted ReceiverAdaptive Beamforming
$37.50
Chapter 4
Thomas Hunziker
Many common adaptive beamforming methods are based on a sample matrix inversion (SMI). The schemes can be applied in two ways. The sample covariance... Sample PDF
On the Employment of SMI Beamforming for Cochannel Interference Mitigation in Digital Radio
$37.50
Chapter 5
Hideki Ochiai, Patrick Mitran, H. Vincent Poor, Vahid Tarokh
In wireless sensor networks, the sensor nodes are often randomly situated, and each node is likely to be equipped with a single antenna. If these... Sample PDF
Random Array Theory and Collaborative Beamforming
$37.50
Chapter 6
W. H. Chin, C. Yuen
Space-time block coding is a way of introducing multiplexing and diversity gain in wireless systems equipped with multiple antennas. There are... Sample PDF
Advanced Space-Time Block Codes and Low Complexity Near Optimal Detection for Future Wireless Networks
$37.50
Chapter 7
Xiang-Gen Xia, Genyuan Wang, Pingyi Fan
Modulated codes (MC) are error correction codes (ECC) defined on the complex field and therefore can be naturally combined with an intersymbol... Sample PDF
Space-Time Modulated Codes for MIMO Channels with Memory
$37.50
Chapter 8
Javier Vía, Ignacio Santamaría, Jesús Ibáñez
This chapter analyzes the problem of blind channel estimation under Space-Time Block Coded transmissions. In particular, a new blind channel... Sample PDF
Blind Channel Estimation in Space-Time Block Coded Systems
$37.50
Chapter 9
Chen Sun, Takashi Ohira, Makoto Taromaru, Nemai Chandra Karmakar, Akifumi Hirata
In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the... Sample PDF
Fast Beamforming of Compact Array Antenna
$37.50
Chapter 10
Eddy Taillefer, Jun Cheng, Takashi Ohira
This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact... Sample PDF
Direction of Arrival Estimation with Compact Array Antennas: A Reactance Switching Approach
$37.50
Chapter 11
Santana Burintramart, Nuri Yilmazer, Tapan K. Sarkar, Magdalena Salazar-Palma
This chapter presents a concern regarding the nature of wireless communications using multiple antennas. Multi-antenna systems are mainly developed... Sample PDF
Physics of Multi-Antenna Communication Systems
$37.50
Chapter 12
MIMO Beamforming  (pages 240-263)
Qinghua Li, Xintian Eddie Lin, Jianzhong ("Charlie") Zhang
Transmit beamforming improves the performance of multiple-input multiple-output antenna system (MIMO) by exploiting channel state information (CSI)... Sample PDF
MIMO Beamforming
$37.50
Chapter 13
Biljana Badic, Jinho Choi
This chapter introduces joint beamforming (or precoding) and space-time coding for multiple input multiple output (MIMO) channels. First, we explain... Sample PDF
Joint Beamforming and Space-Time Coding for MIMO Channels
$37.50
Chapter 14
Zhendong Zhou, Branka Vucetic
This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically... Sample PDF
Adaptive MIMO Systems with High Spectral Efficiency
$37.50
Chapter 15
Joakim Jaldén, Björn Ottersten
This chapter takes a closer look at a class of MIMO detention methods, collectively referred to as relaxation detectors. These detectors provide... Sample PDF
Detection Based on Relaxation in MIMO Systems
$37.50
Chapter 16
Wolfgang Utschick, Pedro Tejera, Christian Guthy, Gerhard Bauch
This chapter discusses four different optimization problems of practical importance for transmission in point to multipoint networks with a multiple... Sample PDF
Transmission in MIMO OFDM Point to Multipoint Networks
$37.50
Chapter 17
Salman Durrani, Marek E. Bialkowski
This chapter discusses the use of smart antennas in Code Division Multiple Access (CDMA) systems. First, we give a brief overview of smart antenna... Sample PDF
Smart Antennas for Code Division Multiple Access Systems
$37.50
Chapter 18
Aimin Sang, Guosen Yue, Xiaodong Wang, Mohammad Madihian
In this chapter, we consider a cellular downlink packet data system employing the space-time block coded (STBC) multiple- input-multiple-output... Sample PDF
Cross-Layer Performance of Scheduling and Power Control Schemes in Space-Time Block Coded Downlink Packet Systems
$37.50
Chapter 19
Yimin Zhang, Xin Li, Moeness G. Amin
This chapter introduces the concept of multi-beam antenna (MBA) in mobile ad hoc networks and the recent advances in the research relevant to this... Sample PDF
Mobile Ad Hoc Networks Exploiting Multi-Beam Antennas
$37.50
Chapter 20
Toru Hashimoto, Tomoyuki Aono
The technology of generating and sharing the key as the representative application of smart antennas is introduced. This scheme is based on the... Sample PDF
Key Generation System Using Smart Antenna
$37.50
Chapter 21
Nemai Chandra Karmakar
Various smart antennas developed for automatic radio frequency identification (RFID) readers are presented. The main smart antennas types of RFID... Sample PDF
Smart Antennas for Automatic Radio Frequency Identification Readers
$37.50
Chapter 22
Konstanty Bialkowski, Adam Postula, Amin Abbosh, Marek Bialkowski
This chapter introduces the concept of Multiple Input Multiple Output (MIMO) wireless communication system and the necessity to use a testbed to... Sample PDF
Field Programmable Gate Array Based Testbed for Investigating Multiple Input Multiple Output Signal Transmission in Indoor Environments
$37.50
Chapter 23
Masahiro Watanabe, Sadao Obana, Takashi Watanabe
Recent studies on directional media access protocols (MACs) using smart antennas for wireless ad hoc networks have shown that directional MACs... Sample PDF
Ad Hoc Networks Testbed Using a Practice Smart Antenna with IEEE802.15.4 Wireless Modules
$37.50
Chapter 24
Monthippa Uthansakul, Marek E. Bialkowski
This chapter introduces the alternative approach for wideband smart antenna in which the use of tapped-delay lines and frequency filters are... Sample PDF
Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters
$37.50
Chapter 25
Jun Cheng, Eddy Taillefer, Takashi Ohira
Three working modes, omni-, sector and adaptive modes, for a compact array antenna are introduced. The compact array antenna is an electronically... Sample PDF
Omni-, Sector, and Adaptive Modes of Compact Array Antenna
$37.50
About the Contributors