Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters

Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters

Monthippa Uthansakul (Suranaree University of Technology, Thailand) and Marek E. Bialkowski (The University of Queensland, Australia)
DOI: 10.4018/978-1-59904-988-5.ch024
OnDemand PDF Download:


This chapter introduces the alternative approach for wideband smart antenna in which the use of tapped-delay lines and frequency filters are avoidable, so called wideband spatial beamformer. Here, the principles of operation and performance of this type of beamformer is theoretically and experimentally examined. In addition, its future trends in education and commercial view points are identified at the end of this chapter. The authors hope that the purposed approach will not only benefit the smart antenna designers, but also inspire the researchers pursuing the uncomplicated beamformer operating in wide frequency band.
Chapter Preview


In the past two decades, radio systems (also known as wireless systems) have grown with an unprecedented speed from early radio paging, cordless telephone, and cellular telephony to today’s personal communication and mobile computing. This rapid expansion of radio systems has a profound impact on today’s business world and people’s daily lives. One undesired outcome is a heavy utilization of the available frequency spectrum. Because of this situation, a considerable interest has been shown in methods and techniques to overcome the limited frequency spectrum. One technique that is capable to increase the wireless system capacity without additional frequency spectrum is the smart antenna technique. Smart antennas are multiple element antennas accompanied by suitable signal processing algorithms either at the transmitter or receiver sides of a communication link. By pointing their beam towards a desired user and nulls or low side lobes towards interfering sources they are capable to considerably improve the quality of signal transmission in a multi-user environment. A significant value of smart antenna techniques in the efficient use of wireless spectrum has been addressed in (Kang, 2002; Jiang 1997). These multiple element antenna systems can also offer other advantages. These include the capability of minimizing the cost of establishing new wireless networks (Shao, 2003; Lee, 2005; Kawitkar, 2003), a better service quality (Hettak, 2000), and transparent operation across multi−technology wireless networks (Alexiou, 2004). It has to be noted that the benefits of smart antennas have been largely demonstrated for the case of narrowband communication systems. As the rapid growth of wireless technologies demands high bit rate data transmission, there is an interest in smart antennas which would operate over an increased frequency band. The design of such wideband intelligent antenna systems creates a challenge in terms of processing techniques and associated costs.

This book chapter gives a brief overview of wideband beamforming techniques. In particular, their advantages and disadvantages are discussed. As a result of these considerations the focus is on a wideband smart antenna system that relies on a fully spatial wideband beamforming technique. Full theoretical and experimental investigations into this wideband smart antenna system are presented.

The chapter is organized as follows. Firstly, shortfalls of narrowband smart antenna/beamforming techniques with respect to wideband signals are demonstrated via a suitable example. A number of wideband signal processing techniques are introduced and discussed to overcome this impairment. They are classified into three categories: space-time, space-frequency and fully spatial techniques. A brief comparison of these three wideband beamforming techniques is presented. As a result of this comparison, the fully spatial beamforming technique is selected for further considerations. Because of this choice, the main part of the chapter is devoted to a wideband spatial beamformer and its practical realization. The considerations commence with the introduction of configuration and the basic principles of operation of a wideband spatial beamformer that is created around a rectangular array of wideband antenna elements. The original beamforming algorithm, as reported in literature, is introduced and its shortfalls with respect to a small size array are pointed out. A suitable rectification of the original beamforming algorithm is proposed so it is valid for an arbitrary size array. The remaining considerations focus on small size arrays, which are easy to realize in practice. A 4×4 element wideband beamformer prototype is developed and tested over a specified frequency band. Various radiation patterns are realized by applying suitably devised signal weighting coefficients. The chapter is finalized with conclusions and remarks concerning future plans for wideband spatial beamformers.

Complete Chapter List

Search this Book:
Table of Contents
Jack H. Winters
Chen Sun, Jun Cheng, Takashi Ohira
Chapter 1
Constantin Siriteanu, Steven D. Blostein
This chapter unifies the principles and analyses of conventional signal processing algorithms for receive-side smart antennas, and compares their... Sample PDF
Eigencombining: A Unified Approach to Antenna Array Signal Processing
Chapter 2
Zhu Liang Yu, Meng Hwa Er, Wee Ser, Chen Huawei
In this chapter, we first review the background, basic principle and structure of adaptive beamformers. Since there are many robust adaptive... Sample PDF
Robust Adaptive Beamforming
Chapter 3
Sheng Chen
Adaptive beamforming is capable of separating user signals transmitted on the same carrier frequency, and thus provides a practical means of... Sample PDF
Adaptive Beamforming Assisted ReceiverAdaptive Beamforming
Chapter 4
Thomas Hunziker
Many common adaptive beamforming methods are based on a sample matrix inversion (SMI). The schemes can be applied in two ways. The sample covariance... Sample PDF
On the Employment of SMI Beamforming for Cochannel Interference Mitigation in Digital Radio
Chapter 5
Hideki Ochiai, Patrick Mitran, H. Vincent Poor, Vahid Tarokh
In wireless sensor networks, the sensor nodes are often randomly situated, and each node is likely to be equipped with a single antenna. If these... Sample PDF
Random Array Theory and Collaborative Beamforming
Chapter 6
W. H. Chin, C. Yuen
Space-time block coding is a way of introducing multiplexing and diversity gain in wireless systems equipped with multiple antennas. There are... Sample PDF
Advanced Space-Time Block Codes and Low Complexity Near Optimal Detection for Future Wireless Networks
Chapter 7
Xiang-Gen Xia, Genyuan Wang, Pingyi Fan
Modulated codes (MC) are error correction codes (ECC) defined on the complex field and therefore can be naturally combined with an intersymbol... Sample PDF
Space-Time Modulated Codes for MIMO Channels with Memory
Chapter 8
Javier Vía, Ignacio Santamaría, Jesús Ibáñez
This chapter analyzes the problem of blind channel estimation under Space-Time Block Coded transmissions. In particular, a new blind channel... Sample PDF
Blind Channel Estimation in Space-Time Block Coded Systems
Chapter 9
Chen Sun, Takashi Ohira, Makoto Taromaru, Nemai Chandra Karmakar, Akifumi Hirata
In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the... Sample PDF
Fast Beamforming of Compact Array Antenna
Chapter 10
Eddy Taillefer, Jun Cheng, Takashi Ohira
This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact... Sample PDF
Direction of Arrival Estimation with Compact Array Antennas: A Reactance Switching Approach
Chapter 11
Santana Burintramart, Nuri Yilmazer, Tapan K. Sarkar, Magdalena Salazar-Palma
This chapter presents a concern regarding the nature of wireless communications using multiple antennas. Multi-antenna systems are mainly developed... Sample PDF
Physics of Multi-Antenna Communication Systems
Chapter 12
MIMO Beamforming  (pages 240-263)
Qinghua Li, Xintian Eddie Lin, Jianzhong ("Charlie") Zhang
Transmit beamforming improves the performance of multiple-input multiple-output antenna system (MIMO) by exploiting channel state information (CSI)... Sample PDF
MIMO Beamforming
Chapter 13
Biljana Badic, Jinho Choi
This chapter introduces joint beamforming (or precoding) and space-time coding for multiple input multiple output (MIMO) channels. First, we explain... Sample PDF
Joint Beamforming and Space-Time Coding for MIMO Channels
Chapter 14
Zhendong Zhou, Branka Vucetic
This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically... Sample PDF
Adaptive MIMO Systems with High Spectral Efficiency
Chapter 15
Joakim Jaldén, Björn Ottersten
This chapter takes a closer look at a class of MIMO detention methods, collectively referred to as relaxation detectors. These detectors provide... Sample PDF
Detection Based on Relaxation in MIMO Systems
Chapter 16
Wolfgang Utschick, Pedro Tejera, Christian Guthy, Gerhard Bauch
This chapter discusses four different optimization problems of practical importance for transmission in point to multipoint networks with a multiple... Sample PDF
Transmission in MIMO OFDM Point to Multipoint Networks
Chapter 17
Salman Durrani, Marek E. Bialkowski
This chapter discusses the use of smart antennas in Code Division Multiple Access (CDMA) systems. First, we give a brief overview of smart antenna... Sample PDF
Smart Antennas for Code Division Multiple Access Systems
Chapter 18
Aimin Sang, Guosen Yue, Xiaodong Wang, Mohammad Madihian
In this chapter, we consider a cellular downlink packet data system employing the space-time block coded (STBC) multiple- input-multiple-output... Sample PDF
Cross-Layer Performance of Scheduling and Power Control Schemes in Space-Time Block Coded Downlink Packet Systems
Chapter 19
Yimin Zhang, Xin Li, Moeness G. Amin
This chapter introduces the concept of multi-beam antenna (MBA) in mobile ad hoc networks and the recent advances in the research relevant to this... Sample PDF
Mobile Ad Hoc Networks Exploiting Multi-Beam Antennas
Chapter 20
Toru Hashimoto, Tomoyuki Aono
The technology of generating and sharing the key as the representative application of smart antennas is introduced. This scheme is based on the... Sample PDF
Key Generation System Using Smart Antenna
Chapter 21
Nemai Chandra Karmakar
Various smart antennas developed for automatic radio frequency identification (RFID) readers are presented. The main smart antennas types of RFID... Sample PDF
Smart Antennas for Automatic Radio Frequency Identification Readers
Chapter 22
Konstanty Bialkowski, Adam Postula, Amin Abbosh, Marek Bialkowski
This chapter introduces the concept of Multiple Input Multiple Output (MIMO) wireless communication system and the necessity to use a testbed to... Sample PDF
Field Programmable Gate Array Based Testbed for Investigating Multiple Input Multiple Output Signal Transmission in Indoor Environments
Chapter 23
Masahiro Watanabe, Sadao Obana, Takashi Watanabe
Recent studies on directional media access protocols (MACs) using smart antennas for wireless ad hoc networks have shown that directional MACs... Sample PDF
Ad Hoc Networks Testbed Using a Practice Smart Antenna with IEEE802.15.4 Wireless Modules
Chapter 24
Monthippa Uthansakul, Marek E. Bialkowski
This chapter introduces the alternative approach for wideband smart antenna in which the use of tapped-delay lines and frequency filters are... Sample PDF
Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters
Chapter 25
Jun Cheng, Eddy Taillefer, Takashi Ohira
Three working modes, omni-, sector and adaptive modes, for a compact array antenna are introduced. The compact array antenna is an electronically... Sample PDF
Omni-, Sector, and Adaptive Modes of Compact Array Antenna
About the Contributors