Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Fast Fourier Transform (FFT)

Encyclopedia of Artificial Intelligence
A class of algorithms used in digital signal processing to compute the Discrete Fourier Transform (DFT) and its inverse. It has the capability of taking functions from the time domain to the frequency domain. The frequency components obtained are the spectra of the signal.
Published in Chapter:
Automatic Classification of Impact-Echo Spectra II
Addisson Salazar (iTEAM, Polytechnic University of Valencia, Spain) and Arturo Serrano (iTEAM, Polytechnic University of Valencia, Spain)
Copyright: © 2009 |Pages: 7
DOI: 10.4018/978-1-59904-849-9.ch031
Abstract
We study the application of artificial neural networks (ANNs) to the classification of spectra from impact-echo signals. In this paper we focus on analyses from experiments. Simulation results are covered in paper I. Impact-echo is a procedure from Non-Destructive Evaluation where a material is excited by a hammer impact which produces a response from the material microstructure. This response is sensed by a set of transducers located on material surface. Measured signals contain backscattering from grain microstructure and information of flaws in the material inspected (Sansalone & Street, 1997). The physical phenomenon of impact-echo corresponds to wave propagation in solids. When a disturbance (stress or displacement) is applied suddenly at a point on the surface of a solid, such as by impact, the disturbance propagates through the solid as three different types of stress waves: a P-wave, an S-wave, and an R-wave. The P-wave is associated with the propagation of normal stress and the S-wave is associated with shear stress, both of them propagate into the solid along spherical wave fronts. In addition, a surface wave, or Rayleigh wave (R-wave) travels throughout a circular wave front along the material surface (Carino, 2001). After a transient period where the first waves arrive, wave propagation becomes stationary in resonant modes of the material that vary depending on the defects inside the material. In defective materials propagated waves have to surround the defects and their energy decreases, and multiple reflections and diffraction with the defect borders become reflected waves (Sansalone, Carino, & Hsu, 1998). Depending on the observation time and the sampling frequency used in the experiments we may be interested in analyzing the transient or the stationary stage of the wave propagation in impact- echo tests. Usually with high resolution in time, analyzes of wave propagation velocity can give useful information, for instance, to build a tomography of a material inspected from different locations. Considering the sampling frequency that we used in the experiments (100 kHz), a feature extracted from the signal as the wave propagation velocity is not accurate enough to discern between homogeneous and different kind of defective materials. The data set for this research consists of sonic and ultrasonic impact-echo signal (1-27 kHz) spectra obtained from 84 parallelepiped-shape (7x5x22cm. width, height and length) lab specimens of aluminium alloy series 2000. These spectra, along with a categorization of the quality of materials among homogeneous, one-defect and multiple-defect classes were used to develop supervised neural network classifiers. We show that neural networks yield good classifications (
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR