Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Holographic Reduced Representation (HRR)

Encyclopedia of Artificial Intelligence
The most popular variety of VSA, uses circular convolution to bind fillers to roles and circular correlation to recover the fillers or roles from the bindings.
Published in Chapter:
Distributed Representation of Compositional Structure
Simon D. Levy (Washington and Lee University, USA)
Copyright: © 2009 |Pages: 6
DOI: 10.4018/978-1-59904-849-9.ch078
Abstract
AI models are often categorized in terms of the connectionist vs. symbolic distinction. In addition to being descriptively unhelpful, these terms are also typically conflated with a host of issues that may have nothing to do with the commitments entailed by a particular model. A more useful distinction among cognitive representations asks whether they are local or distributed (van Gelder 1999). Traditional symbol systems (grammar, predicate calculus) use local representations: a given symbol has no internal content and is located at a particular address in memory. Although well understood and successful in a number of domains, traditional representations suffer from brittleness. The number of possible items to be represented is fixed at some arbitrary hard limit, and a single corrupt memory location or broken pointer can wreck an entire structure. In a distributed representation, on the other hand, each entity is represented by a pattern of activity distributed over many computing elements, and each computing element is involved in representing many different entities (Hinton 1984). Such representations have a number of properties that make them attractive for knowledge representation (McClelland, Rumelhart, & Hinton 1986): they are robust to noise, degrade gracefully, and support graded comparison through distance metrics. These properties enable fast associative memory and efficient comparison of entire structures without unpacking the structures into their component parts. This article provides an overview of distributed representations, setting the approach in its historical context. The two essential operations necessary for building distributed representation of structures – binding and bundling – are described. We present example applications of each model, and conclude by discussing the current state of the art.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR