Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Vibrational Sidebands

Handbook of Research on Systems Biology Applications in Medicine
Due to the Franck-Condon principle, the electronic excitation takes place from the electronic ground state (which is vibrationally equilibrated, i.e. is also in the vibrational ground state) to vibrational ground and higher states of the excited electronic state. The transition from the vibrational groundstate of the electronic groundstate to the vibrational groundstate of the excited electronic state is called 0-0 transition. The energy gap between the electronic groundstate and vibrational excited states of the excited electronic state is larger than that of the 0-0 transition, therefor the 0-0 spectral line is accompanied by spectral lines with higher energy due to 0-1, 0-2, … transitions. In case of the FMO protein, the 0-0 transition is dominating and the sidebands just broaden the spectral lines on the high energy side.
Published in Chapter:
Photosynthesis: How Proteins Control Excitation Energy Transfer
Julia Adolphs (Freie Universität Berlin, Germany)
Copyright: © 2009 |Pages: 15
DOI: 10.4018/978-1-60566-076-9.ch034
Abstract
This chapter introduces the theory of optical spectra and excitation energy transfer of light harvesting complexes in photosynthesis. The light energy absorbed by protein bound pigments in these complexes is transferred via an exciton mechanism to the photosynthetic reaction center where it drives the photochemical reactions. The protein holds the pigments in optimal orientation for excitation energy transfer and creates an energy sink by shifting the local transition energies of the pigments. In this way, the excitation energy is directed with high efficiency (close to 100 %) to the reaction center. In the present chapter, this energy transfer is studied theoretically. Based on crystal structure data, the excitonic couplings are calculated taking into account also the polarizability of the protein. The local transition energies are obtained by two independent methods and are used to predict the orientation of the FMO protein relative to the reaction center.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR