Table of Contents

Preface .. xxii

Volume I

Section 1

Fundamental Concepts and Theories

This section serves as a foundation for this exhaustive reference tool by addressing underlying principles essential to the understanding of STEM Education. Chapters found within these pages provide an excellent framework in which to position STEM Education within the field of information science and technology. Insight regarding the critical incorporation of global measures into STEM Education is addressed, while crucial stumbling blocks of this field are explored. With 16 chapters comprising this foundational section, the reader can learn and choose from a compendium of expert research on the elemental theories underscoring the STEM Education discipline.

Chapter 1

STEM in Early Childhood Education: We Talk the Talk, But Do We Walk the Walk?................. 1
Alper Tolga Kumtepe, Anadolu University, Turkey
Evrim Genc-Kumtepe, Anadolu University, Turkey

Chapter 2

Globalisation, Blended Learning, and Mathematics Education: Implications for Pedagogy in Tertiary Institutions... 25
Adedeji Tella, University of Ibadan, Nigeria

Chapter 3

Argumentation and Modeling: Integrating the Products and Practices of Science to Improve Science Education... 47
Douglas B. Clark, Vanderbilt University, USA
Pratim Sengupta, Vanderbilt University, USA

Chapter 4

Creating Open Source Lecture Materials: A Guide to Trends, Technologies, and Approaches in the Information Sciences................................. 68
William H. Hsu, Kansas State University, USA
Chapter 14
Dynamical Software and the Derivative Concept ... 257
Ljubica Dikovic, Business Technical University, Serbia

Chapter 15
Curriculum Contents of Digital Library Education (DLE) in Europe 267
Nafiz Zaman Shuva, University of Dhaka, Bangladesh
Ragnar Andreas Audunson, Oslo and Akershus University College of Applied Sciences, Norway

Chapter 16
Strategy Instruction and Maintenance of Basic Multiplication Facts through Digital Game Play..... 290
André R. Denham, The University of Alabama, USA

Section 2
Tools and Technologies
This section presents an extensive coverage of various tools and technologies available in the field of STEM Education that practitioners and academicians alike can utilize to develop different techniques. These chapters enlighten readers about fundamental research on the many tools facilitating the burgeoning field of STEM Education. It is through these rigorously researched chapters that the reader is provided with countless examples of the up-and-coming tools and technologies emerging from the field of STEM Education. With 13 chapters, this section offers a broad treatment of some of the many tools and technologies within the STEM Education field.

Chapter 17
Technology in Mathematics Education: A Catalyst for Diversity Leadership 311
Peter M. Eley, Fayetteville State University, USA

Chapter 18
Teaching Mathematics with Tablet PCs: A Professional Development Program Targeting Primary School Teachers ... 322
Maria Meletiou-Mavrotheris, European University Cyprus, Cyprus
Katerina Mavrou, European University Cyprus, Cyprus
George Stylianou, European University Cyprus, Cyprus
Stephanos Mavromoustakos, European University Cyprus, Cyprus
George Christou, European University Cyprus, Cyprus

Chapter 19
Using Educational Computer Games for Science Teaching: Experiences and Perspectives of Elementary Science Teachers in Taiwan ... 345
Ying-Tien Wu, Graduate Institute of Network Learning Technology, National Central University, Taiwan

Chapter 20
Online Simulator Use in the Preparing Chemical Engineers .. 358
Randy Yerrick, Graduate School of Education, State University of New York at Buffalo, USA
Carl Lund, State University of New York at Buffalo, USA
Yonghee Lee, State University of New York at Buffalo, USA
Chapter 21	Using Technology to Engage Students with the Standards for Mathematical Practice: The Case of DGS	Milan Sherman, Drake University, USA
Chapter 22	Facebook as an Educational Environment for Mathematics Learning	Nimer Baya’a, Al-Qasemi Academic College of Education, Israel Wajeeh Daher, Al-Qasemi Academic College of Education, Israel & An-Najah National University, Palestine
Chapter 23	The GeoGebra Institute of Torino, Italy: Research, Teaching Experiments, and Teacher Education	Ornella Robutti, Università di Torino, Italy
Chapter 24	Web-Based Simulations for the Training of Mathematics Teachers	Maria Meletiou-Mavrotheris, European University Cyprus Katerina Mavrou, European University Cyprus
Chapter 25	Experiences in Usability Evaluation of Educational Programming Tools	J. Ángel Veldáquez-Iturbide, Universidad Rey Juan Carlos, Spain Antonio Pérez-Carrasco, Universidad Rey Juan Carlos, Spain Ouafae Debdi, Universidad Rey Juan Carlos, Spain
Chapter 26	Mobile Technology in Higher Education: Patterns of Replication and Transferability	Meghan Morris Deyoe, University at Albany (SUNY), USA Dianna L. Newman, University at Albany (SUNY), USA Jessica M. Lamendola, University at Albany (SUNY), USA
Chapter 27	Flying a Math Class? Using Web-Based Simulations in Primary Teacher Training and Education	Katerina Mavrou, European University Cyprus, Cyprus Maria Meletiou-Mavrotheris, European University Cyprus, Cyprus

Volume II

| Chapter 28 | A Tool for Analyzing Science Standards and Curricula for 21st Century Science Education | Danielle E. Dani, Ohio University, USA Sara Salloum, Long Island University, USA Rola Khishfe, American University of Beirut, Lebanon Saouma BouJaoude, American University of Beirut, Lebanon |
Chapter 29
Self-Regulated Learning as the Enabling Environment to Enhance Outcome-Based Education of Undergraduate Engineering Mathematics

Roselainy Abdul Rahman, Universiti Teknologi Malaysia, Malaysia
Sabariah Baharun, Universiti Teknologi Malaysia, Malaysia
Yudariah Mohamad Yusof, Universiti Teknologi Malaysia, Malaysia
Sharifah Alwiah S. Abdur Rahman, Universiti Teknologi Malaysia, Malaysia

Section 3
Frameworks and Methodologies

This section provides in-depth coverage of conceptual architecture frameworks to provide the reader with a comprehensive understanding of the emerging developments within the field of STEM Education. Research fundamentals imperative to the understanding of developmental processes within STEM Education are offered. From broad examinations to specific discussions on methodology, the research found within this section spans the discipline while offering detailed, specific discussions. From basic designs to abstract development, these chapters serve to expand the reaches of development and design technologies within the STEM Education community. This section includes 15 contributions from researchers throughout the world on the topic of STEM Education.

Chapter 30
Multiple Perspectives for the Study of Teaching: A Conceptual Framework for Characterizing and Accessing Science Teachers’ Practical-Moral Knowledge

Sara Salloum, Long Island University – Brooklyn, USA

Chapter 31
Learning about the Different Dimensions of Sustainability by Applying the Product Test Method in Science Classes

Mareike Burmeister, Institute of Science Education, University of Bremen, Germany
Janine von Döhlen, Institute of Science Education, University of Bremen, Germany
Ingo Eilks, Institute of Science Education, University of Bremen, Germany

Chapter 32
Providing Elementary and Middle School Science Teachers with Content and Pedagogical Professional Development in an Online Environment

Mary V. Mawn, SUNY Empire State College, USA
Kathleen S. Davis, University of Massachusetts – Amherst, USA

Chapter 33
Implementing the Understanding by Design Framework in Higher Education

Judy Alhamisi, Marygrove College, USA
Blanche Jackson Glimps, Tennessee State University, USA
Chukwunyere E. Okezie, Marygrove College, USA

Chapter 34
Designing and Teaching an Online Elementary Mathematics Methods Course: Promises, Barriers, and Implications

Drew Polly, University of North Carolina - Charlotte, USA
Chapter 35
Sustainability in Higher Education through Basic Science Research: Strategies for Corporate Bodies in Pharmaceuticals
P. Yogeeswari, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
D. Sriram, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India

Chapter 36
cSELF (Computer Science Education from Life): Broadening Participation through Design Agency
Audrey Bennett, Rensselaer Polytechnic Institute, USA
Ron Eglash, Rensselaer Polytechnic Institute, USA

Chapter 37
TPACK Pathways that Facilitate CCSS Implementation for Secondary Mathematics Teacher Candidates
Nathan Borchelt, Western Carolina University, USA
Axelle Faughn, Western Carolina University, USA
Kathy Jaqua, Western Carolina University, USA
Kate Best, Western Carolina University, USA

Chapter 38
Bridging the Academia-Industry Gap in Software Engineering: A Client-Oriented Open Source Software Projects Course
Bonnie K. MacKellar, St. John’s University, USA
Mihaela Sabin, University of New Hampshire, USA
Allen B. Tucker, Bowdoin College, USA

Chapter 39
Improving Learning Strategies for Mathematics through E-Learning
Cristina Bardelle, Università del Piemonte Orientale A. Avogadro, Italy

Chapter 40
Collaboration Not Competition: International Education Expanding Perspectives on Learning and Workforce Articulation
Cynthia J. Benton, State University of New York College at Cortland, USA
Orvil L. White, State University of New York College at Cortland, USA
Susan K. Stratton, State University of New York College at Cortland, USA

Chapter 41
Active Learning, Mentoring, and Mobile Technology: Meeting Needs across Levels in One Place
Dianna L. Newman, University at Albany (SUNY), USA
Jessica M. Lamendola, University at Albany (SUNY), USA
Meghan Morris Deyoe, University at Albany (SUNY), USA
Kenneth A. Connor, Rensselaer Polytechnic Institute, USA
Chapter 42
Using Project-Based Learning to Teach Sustainability Issues to Elementary Students779
 Ingrid Weiland, University of Louisville, USA
 Elisa Pokral, Monroe County Indiana Waste Management District, USA
 Kristin Cook, Bellarmine University, USA

Chapter 43
Integration of the Computer Games into Early Childhood Education Pre-Service Teachers’ Mathematics Teaching ...799
 Hatice Sancar Tokmak, Mersin University, Turkey
 Lutfi Incikabi, Kastamonu University, Turkey

Chapter 44
Linking Education to Creating a Knowledge Society: Qatar’s Investment in the Education Sector ...818
 Alan S. Weber, Weill Cornell Medical College, Qatar

Section 4
Cases and Applications

This section discusses a variety of applications and opportunities available that can be considered by practitioners in developing viable and effective STEM Education programs and processes. This section includes 19 chapters that review topics from case studies in STEM Education. Contributions included in this section provide excellent coverage of today’s education and IT communities and how research into STEM Education is impacting the social fabric of our present-day global village.

Chapter 45
3D Multi-User Virtual Environments in Science Education: Potential and Challenges841
 Yufeng Qian, Northeastern University, USA

Chapter 46
Learning about Sustainability in a Non-Formal Laboratory Context for Secondary Level Students: A Module on Climate Change, the Ozone Hole, and Summer Smog...864
 Nicole Garner, Institute for Science Education, University of Bremen, Germany
 Maria de Lourdes Lischke, Institute for Science Education, University of Bremen, Germany
 Antje Siol, Institute for Environmental Research and Sustainable Technologies, University of Bremen, Germany
 Ingo Eilks, Institute for Science Education, University of Bremen, Germany

Chapter 47
Analysis of Discourse Practices in Elementary Science Classrooms using Argument-Based Inquiry during Whole-Class Dialogue ...880
 Matthew J. Benus, Indiana University Northwest, USA
 Morgan B. Yarker, University of Iowa, USA
 Brian M. Hand, University of Iowa, USA
 Lori A. Norton-Meier, University of Louisville, USA
Chapter 48
A Research of Employing Cognitive Load Theory in Science Education via Web-Pages902
Yuan-Cheng Lin, Elementary School Teacher of Tainan City, Taiwan
Ming-Hsun Shen, Graduate Institute of Science Education, National Kaohsiung Normal
University, Taiwan
Chia-Ju Liu, Graduate Institute of Science Education, National Kaohsiung Normal
University, Taiwan

Chapter 49
A Comparative Study on Undergraduate Computer Science Education between China and the
United States ..918
Eric P. Jiang, University of San Diego, USA

Chapter 50
Teaching a Socially Controversial Scientific Subject: Evolution...934
Hasan Deniz, University of Nevada Las Vegas, USA

Chapter 51
The Role of Authentic Science Research and Education Outreach in Increasing Community
Resilience: Case Studies Using Informal Education to Address Ocean Acidification and Healthy
Soils...946
Cynthia Hall, West Chester University, USA
Regina Easley, University of South Florida, USA
Joniqua Howard, University of Puerto Rico, Puerto Rico
Trina Halfhide, University of South Florida, USA

Chapter 52
Teaching Political Science Students to Find and Evaluate Information in the Social Media
Flow ...967
Megan Fitzgibbons, McGill University, Canada

Chapter 53
Subject Specialization and Science Teachers’ Perception of Information and Communication
Technology for Instruction in Kwara State ..988
Michael Ayodele Fakomogbon, University of Ilorin, Nigeria
Rachael Funmi Adebayo, Landmark University, Nigeria
Mosiforeba Victoria Adegbi, University of Ilorin, Nigeria
Ahmed Tajudeen Shittu, Al-Hikmah University, Nigeria
Oloyede Solomon Oyelekan, University of Ilorin, Nigeria

Chapter 54
Enhancing Diversity in STEM Interdisciplinary Learning..997
Reginald A. Blake, New York City College of Technology, City University of New York, USA
Janet Liou-Mark, New York City College of Technology, City University of New York, USA
Chapter 55
Improving Novice Programmers’ Skills through Playability and Pattern Discovery: A Descriptive Study of a Game Building Workshop ...1020

Thiago Schumacher Barcelos, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil & Universidade Cruzeiro do Sul, Brazil
Roberto Muñoz Soto, Universidad de Valparaíso – Escuela de Ingeniería Civil Informática, Chile
Ismar Frango Silveira, Universidade Cruzeiro do Sul, Brazil & Universidade Presbiteriana Mackenzie, Brazil

Chapter 56
Viewing the Implementation of the CCSS through the Lens of One Transformative District-University Partnership ...1051

P. Michael Lutz, California State University – Bakersfield, USA

Volume III

Chapter 57
Effects of Implementing STEM-I Project-Based Learning Activities for Female High School Students ...1062

Shi-Jer Lou, Graduate Institute of Technical and Vocational Education, National Pingtung University of Science and Technology, Taiwan
Huei-Yin Tsai, National Kaohsiung Normal University, Taiwan
Kuo-Hung Tseng, Meiho University, Taiwan
Ru-Chu Shih, National Pingtung University of Science and Technology, Taiwan

Chapter 58
Collaborative Teams as a Means of Constructing Knowledge in the Life Sciences: Theory and Practice ...1083

Grant E. Gardner, Middle Tennessee State University, USA
Kristi L. Walters, East Carolina University, USA

Chapter 59
Comparison of Two Classrooms: Environmental Knowledge in Urban and Regional Planning Education ...1099

Barış Ergen, Bozok University, Turkey

Chapter 60
Death in Rome: Using an Online Game for Inquiry-Based Learning in a Pre-Service Teacher Training Course ...1118

Shannon Kennedy-Clark, Australian Catholic University, Australia
Vilma Galstaun, University of Sydney, Australia
Kate Anderson, University of Sydney, Australia
Chapter 61
English Language Learners’ Online Science Learning: A Case Study ..1133
 Fatima E. Terrazas-Arellanes, University of Oregon, USA
 Carolyn Knox, University of Oregon, USA
 Carmen Rivas, University of Oregon, USA
 Emily Walden, University of Oregon, USA

Chapter 62
Earth System Science in Three Dimensions: Perspectives of Students and Teachers on NASA’s
Project 3D-VIEW ..1159
 Meghan E. Marrero, Mercy College, USA
 Glen Schuster, U.S. Satellite Laboratory, USA
 Amanda Bickerstaff, CUNY Graduate Center, USA

Chapter 63
Video Gaming for STEM Education...1177
 Kim J. Hyatt, Carnegie Mellon University, USA
 Jessica L. Barron, Duquesne University, USA
 Michaela A. Noakes, Duquesne University, USA

Section 5
Issues and Challenges

This section contains 10 chapters, giving a wide variety of perspectives on STEM Education and its implications. The section also discusses new ethical considerations within transparency and accountability. Within the chapters, the reader is presented with an in-depth analysis of the most current and relevant issues within this growing field of study. Crucial questions are addressed and alternatives offered.

Chapter 64
Self-Regulated Learning as a Method to Develop Scientific Thinking ...1189
 Erin E. Peters Burton, George Mason University, USA

Chapter 65
A Novel Strategy to Improve STEM Education: The E-Science Approach1215
 Samar I. Swaid, Philander Smith College, USA

Chapter 66
Conceptual Mapping Facilitates Coherence and Critical Thinking in the Science Education
System...1227
 James Gorman, Northbridge High School, USA
 Jane Heinze-Fry, Museum Institute for Teaching Science, USA
Chapter 67
Using the Flipped Classroom Instructional Approach to Foster a Mathematics-Anxious-Friendly Learning Environment ... 1259
 Chris L. Yuen, SUNY Buffalo, USA

Chapter 68
Pass, Fail, or Incomplete? Analyzing Environmental Education in Nova Scotia’s Sixth Grade Curriculum .. 1283
 Elizabeth Spence, Dalhousie University, Canada
 Tarah Wright, Dalhousie University, Canada
 Heather Castleden, Dalhousie University, Canada

Chapter 69
Remote Access to Scientific Laboratory Equipment and Competency-Based Approach to Science and Technology Education .. 1302
 M.I. Mazuritskiy, Southern Federal University, Russia
 S.A. Safontsev, Southern Federal University, Russia
 B.G. Konoplev, Southern Federal University, Russia
 A.M. Boldyreva, Southern Federal University, Russia

Chapter 70
Rooted in Teaching: Does Environmental Socialization Impact Teachers’ Interest in Science-Related Topics? .. 1317
 Lisa A. Gross, Appalachian State University, USA
 Joy James, Appalachian State University, USA
 Eric Frauman, Appalachian State University, USA

Chapter 71
Women’s Roles: Do They Exist in a Technological Workforce? .. 1336
 Heshium R. Lawrence, The University of Texas at Tyler, USA

Chapter 72
Using Technology in a Studio Approach to Learning: Results of a Five Year Study of an Innovative Mobile Teaching Tool ... 1349
 Dianna L. Newman, University at Albany/SUNY, USA
 Gary Clure, University at Albany/SUNY, USA
 Meghan Morris Deyoe, University at Albany/SUNY, USA
 Kenneth A. Connor, Rensselaer Polytechnic Institute, USA

Chapter 73
Developing an Online Mathematics Methods Course for Preservice Teachers: Impact, Implications, and Challenges .. 1367
 Drew Polly, UNC Charlotte, USA
Section 6
Emerging Trends

This section highlights research potential within the field of STEM Education while exploring uncharted areas of study for the advancement of the discipline. Introducing this section are chapters that set the stage for future research directions and topical suggestions for continued debate, centering on the new venues and forums for discussion. A pair of chapters on the usability and effectiveness research makes up the middle of the section of the final 10 chapters, and the book concludes with a look ahead into the future of the STEM Education field, with “Why Immersive, Interactive Simulation Belongs in the Pedagogical Toolkit of ‘Next Generation’ Science.” In all, this text will serve as a vital resource to practitioners and academics interested in the best practices and applications of the burgeoning field of STEM Education.

Chapter 74
Opening Both Eyes: Gaining an Integrated Perspective of Geology and Biology1378
 Renee M. Clary, Mississippi State University, USA
 James H. Wandersee, Louisiana State University, USA

Chapter 75
Pre-Service Teachers’ Self-Efficacy and Attitudes toward Learning and Teaching Science in a
Content Course..1397
 Cindi Smith-Walters, Middle Tennessee State University, USA
 Heather L. Barker, Middle Tennessee State University, USA

Chapter 76
Developing Scientific Literacy: Introducing Primary-Aged Children to Atomic-Molecular
Theory...1416
 Jennifer Donovan, University of Southern Queensland, Australia
 Carole Haeusler, University of Southern Queensland, Australia

Chapter 77
New Trends in Service Science and Education for Service Innovation...1440
 Michitaka Kosaka, Japan Advanced Institute of Science and Technology, Japan
 Kunio Shirahada, Japan Advanced Institute of Science and Technology, Japan

Chapter 78
K-20 Education in Relation to Library Science ...1461
 Lesley S. J. Farmer, California State University – Long Beach, USA

Chapter 79
Blend the Lab Course, Flip the Responsibility ...1483
 Mark A. Gallo, Niagara University, USA

Chapter 80
Presenting Physics Content and Fostering Creativity in Physics among Less-Academically
Inclined Students through a Simple Design-Based Toy Project ...1506
 Nazir Amir, Greenview Secondary School, Singapore
 R. Subramaniam, Nanyang Technological University, Singapore
Chapter 81
Shaping the Librarian’s Library: Collecting to Support LIS Education and Practice1535
Susan E. Searing, University of Illinois, USA

Chapter 82
Environmental Science Education in the 21st Century: Addressing the Challenges and
Opportunities both Globally and at Home through Online Multimedia Innovation......................1559
Jacqueline McLaughlin, Pennsylvania State University – Lehigh Valley, USA
Rose Baker, Pennsylvania State University – University Park, USA

Chapter 83
Why Immersive, Interactive Simulation Belongs in the Pedagogical Toolkit of “Next Generation”
Science: Facilitating Student Understanding of Complex Causal Dynamics.............................1578
M. Shane Tutwiler, Harvard University, USA
Tina Grotzer, Harvard University, USA

Index ... xxiv