Preface: Why Knowledge Management?

INTRODUCTION

Welcome to Ubiquitous Developments in Knowledge Management: Integrations and Trends. This book presents current research in Knowledge Management. Each chapter presents new technologies, approaches, issues, solutions, or cases that can help an organization implement a knowledge management, KM, initiative or provide a knowledge base for the practitioner/academic researcher. This chapter provides a basic definition of KM and then explores why KM is important in today’s world. Most readers are already convinced that KM is important; however, showing this quantitatively may be difficult. This chapter provides a discussion that shows KM is really, really important.

KM is the answer to why IS/IT Matters and even the Productivity Paradox. KM makes organizations more productive, but some would rather call it Business Intelligence, Competitive Intelligence, Social Capital, or some term other than KM; and actually go to great pains to avoid the use of the KM term. There is an identity crisis as to what KM is. Some consider KM to be a document management system, a data warehouse, a web portal, or a wiki or other collaboration tool; others consider it a process, a way of thinking, a strategy, or a social network. Jennex (2005) defines KM as the practice of selectively applying knowledge from previous experiences of decision-making to current and future decision making activities with the express purpose of improving the organization’s effectiveness.

This is consistent with what Keen and Tan (2007) call a corporatist view of KM in that it is mission focused on using knowledge as an asset to improve processes. I see this as the necessary driver for KM and go a step further by stating that KM is really about two issues:

- Leveraging what the organization “knows” so that it can better utilize its knowledge assets, and
- Connecting knowledge generators, holders, and users to facilitate the flow of knowledge through the organization

These issues use the term “organization” very loosely. I view an organization as any group with a purpose. This means that an organization can be a formal business organization, a governmental organization, a multinational organization, or even an informal organization such as a community of practice. Also, an organization may have a formal command structure, an informal command structure, or be leaderless. This is a purposefully broad definition because were finding that KM can help all sorts of “organizations.” I’m realizing that organizations are evolving into a variety of structures with various governance approaches and with various knowledge needs and tying ourselves to a set view of an organization will only limit the application of KM.
These issues also cause some of the KM identity crisis as many researchers and practitioners focus on one or the other of the issues and so view KM through their issue’s particular lens. This is unfortunate and it is hoped that this chapter will encourage all KM practitioners and researchers to accept the dual nature of KM.

Finally, these issues drive the technologies, processes, methodologies, techniques, and practices used to implement KM. This book includes chapters on many of these and the reader is encouraged to remember that KM has a dual focus and to implement KM well and organization needs technologies, processes, methodologies, techniques, and practices for both issues. Additionally, the advent of web 2.0 technologies is driving resurgence in KMS development. Organizations are embracing the collaborative and semantic tools and processes Web 2.0 provide to create inexpensive but effective KMS. Wikis, blogs, social networks, YouTube, and web services are being used, mashed together, or incorporated into commercial products like SharePoint to create KMS that allow work groups up to full organizations to self-organize knowledge and their knowledge sharing networks quickly and inexpensively. Concerns such as security and ontology are being overcome by the commercial products like SharePoint or by adjusting organizational processes while using shareware products. Issues such as organizational KM strategy and infrastructure are still being evolved to incorporate web 2.0 technologies and processes.

This book presents research which helps address these issues so they will not be explored further. What will be explored is why organizations need KM.

THE NEED FOR KNOWLEDGE MANAGEMENT

Organizations do KM because it makes sense, as KM, when done successfully has an impact on the organization and its members. This is illustrated by the Jennex Olfman Knowledge Management Success Model (Jennex and Olfman, 2006); see figure 1, as KM success is ultimately reflected in impacts to the organization. Jennex, Smolnik, and Croasdell (2008) refined this reflection of KM success into a definition of KM success:

KM success is a multidimensional concept. It is defined by capturing the right knowledge, getting the right knowledge to the right user, and using this knowledge to improve organizational and/or individual performance. KM success is measured by means of the dimensions: impact on business processes, impact on strategy, leadership, and knowledge content.

What is required for KM to be successful? Jennex and Olfman (2005) summarized and synthesized the literature on KM/KMS’s critical success factors (CSF) into an ordered set of 12 KM CSFs identified from 17 studies of more than 200 KM projects. These CSFs were thereafter sequentially ordered according to the number of studies identifying them:

- A knowledge strategy that identifies users, sources, processes, storage strategy, knowledge, and links to knowledge for the KMS;
- Motivation and commitment of users, including incentives and training;
- Integrated technical infrastructure, including networks, databases/repositories, computers, software, and KMS experts;
- An organizational culture and structure that supports learning and the sharing and use of knowledge;
A common enterprise-wide knowledge structure that is clearly articulated and easily understood;
Senior management support, including allocation of resources, leadership, and training;
Learning organization;
The KMS has a clear goal and purpose;
Measures are established to assess the impacts of the KMS and the use of knowledge, as well as verification that the right knowledge is being captured;
The search, retrieval, and visualization functions of the KMS support facilitated use of knowledge;
Work processes are designed that incorporate knowledge capture and use; and
Knowledge is secured / protected.

The Jennex and Olfman (2006) KM Success Model (Figure 1) is derived using these CSFs and from analysis of case studies from several organizations and industries, and applying this analysis to the DeLone and McLean (1992, 2003) Information Success Model in order to generate a theoretically grounded KM Success model. The Jennex and Olfman KM Success Model has been tested in full and part by several studies and is considered to be reasonably validated.

While this may be enough to encourage organizations to pursue a KM initiative and show them what it takes to do it successfully, many organizations still need more basis to justify an investment in KM. Calculating Return on Investment, ROI, is a popular approach, but how is this done? There are some commonly accepted first steps:

- Find a need or an opportunity that KM satisfies, supports, or resolves.
- Identify the costs with the need or the benefits of the opportunity
- Identify the savings or potential earnings that implementing KM will provide
- Identify the costs of implementing KM

Easily stated but not easily done and the resulting financial numbers are often questionable. Do the numbers present the full story for KM? Many think they don’t and that stories and anecdotes about KM need to be included to make KM real to management (Moore, 2008). This chapter is not about how to calculate the numbers; rather, this chapter is presenting some of the stories that are the other drivers that should be considered when determining if a KM initiative is appropriate. These stories are discussed below.

The Stories

Loss of Critical Knowledge

Organizations are facing severe stresses. 2008 and 2009 and probably 2010 are global recession years. Many organizations are being forced to cut back on expenditures as revenues and investment decline. The result in many organizations is a reduction in personnel. The more desperate the organization, the deeper the personnel cuts. Unfortunately personnel cuts do more than cut costs, they cut knowledge that the organization may need to compete later. Should organizations use KM to guide their cuts? Yes, they should but usually can’t use KM to guide layoffs due to legal liabilities. Should organizations use KM to assess the risk of losing critical knowledge and try to capture that knowledge they need? Yes
they should but most don’t because of the energy and time needed to just stay in business takes away the time to assess, organize, and capture critical knowledge. How this loss of knowledge will affect future growth and competitiveness remains to be seen but it is anticipated that it will take more than the economy and financial sectors recovering before organizations will recover. Those organizations wanting to come out of the recession strong will have to recover lost knowledge and knowledge assets to give themselves a competitive edge.

Knowledge loss due to recession cutbacks is not the only cause of knowledge loss. Kosilov, Mazour, and Yanev (2006) report that the United States commercial nuclear industry faces the issue of a ‘greying’ workforce where literally half the current workers will be eligible to retire within the next five years (the aging of the Baby Boomer generation). The Federal Interagency Forum on Aging-Related Statistics (2006) reports that by 2010 more than 25% of the United States work force will have reached retirement age. The United States, Europe, Japan, and the rest of the developed countries are aging and will be losing knowledge as it retires and walks out the door. This is a rapidly approaching crisis; few organizations can withstand a 25% loss of personnel, all senior employees, without a loss in effectiveness. Parise, et al. (2006) recognized that while retirement is the most immediate contributor to knowledge loss, other factors, in particular job mobility, are major, continuing contributors requiring a process to capture critical knowledge. Additionally, Deloitte and Touche (2005) found that 69% of the 1396 human resources practitioners they surveyed said attracting new talent poses the greatest threat to competitiveness, followed by the inability to retain key talent (66%) and incoming workers with inadequate skills (34%). However, Parise, et al. (2006) report that only half of the above surveyed organizations had identified a list of critical skills needed for future growth and more than one-quarter viewed
defining critical skills as unimportant. Additionally, Parise, et al. (2005) found that the key problem with many retention approaches is that they capture only a small fragment of what made an individual successful and knowledgeable. Ultimately, Massingham (2008) found that knowledge loss from losing an employee has three impacts:

- Loss of contribution to the organizational memory
- Loss of relational knowledge with the internal and external social network (fellow employees and customers).
- Loss of work performance resulting in decreased organizational productivity (there is a decrease in the organization’s ability to perform the tasks it performed before the employee left).

Eucker (2007) summarizes this by saying a lost employee results in lost know-how, know-who, know-what.

Can KM mitigate this crisis? Yes, it can, but organizations need to start assessing what knowledge is critical, who has it, and what is the risk of these people leaving. Is KM preparing tools to assist organizations in doing this? The nuclear industry has been conducting research into knowledge loss due to its aging work force. There risk is made worse by a lack of new/replacement work force since few new nuclear plants have been built in the last 20 years, making this a less attractive career for engineers and other knowledge workers. The International Atomic Energy Agency, IAEA, has led research into methods to mitigate knowledge loss from retiring workers. This research culminated in the publication of their 2006 guide “Risk Management of Knowledge Loss in Nuclear Industry Organizations.” (Kosilov, Mazour, and Yanev, 2006) The IAEA Knowledge Loss Risk Assessment is designed to identify positions/people where the potential knowledge loss is greatest and most imminent. It includes ratings based on two factors: time until retirement and position criticality; and provides focus - identifies “experts” where steps to mitigate knowledge loss may be needed. The Knowledge Loss Risk Assessment consists of three steps:

- Conduct a Knowledge Loss Risk Assessment
- Determine Approach to Capture Critical Knowledge
- Monitor and Evaluate

Additionally, Jennex (2009) has expanded the knowledge loss risk assessment to be worker, rather than position, specific. Jennex (2009) applied the standard risk formula: R=pxC to assess risk. Probability, p, was determined using factors that influence probability of knowledge loss including age, health, uniqueness of skills and knowledge, demand for skills and knowledge, and years of service. Consequence, C, was determined using factors that influence the importance of the employee to the organization and include criticality to competitive advantage, key skills possessed, key experience possessed, and if the employee is a key contributor. Consequence is mitigated by the ease of replacement of the employee and the uniqueness of the knowledge possessed by the employee. The determined risk was then adjusted based on the quality of the employee including time to loss of the employee, current health of the employee, time since employee acquired the critical knowledge, ability/willingness to share knowledge, and reason for leaving.

Other approaches include Kaplan (2008) who proposes using Communities of Practice, knowledge repositories, and mentoring and intern programs to assist the procurement industry in transferring...
knowledge from retiring workers to replacements. Parise, et al. (2006) propose using organizational network analysis to also assess the impact the loss of knowledge in a departing employee has on their work network and consider two network roles, Central Connector (those with technical expertise and organizational memory as well as a set of relationships that help many others get information or other resources to do their work) and Broker (broad knowledge of how the organization operates and ability to recognize and take advantage of opportunities that require integration of disparate expertise), as crucial roles requiring actions for capturing knowledge. Massingham (2008) supports the need for social network analysis as it was found that while loss of a critical employee may impact the social network by causing a loss of knowledge, it may also be mitigated because much of the knowledge possessed by the critical employee was distributed throughout their social network. Only by performing a social network analysis will the organization know which case (knowledge loss or loss mitigation) exists.

Ultimately, organizations need KM to help them understand and mitigate the potential loss of knowledge from employees leaving, retiring, being laid off, or lost for whatever reason.

Loss of Critical Knowledge: The United States Space Program

This example comes from a visit my eldest son and I made to the International Space Hall of Fame and Museum in Alamogordo, New Mexico. While there we talked to a retiree from the space program. During this conversation it came out that we were both engineers (he had served as a member of the capsule recovery team and a backup astronaut and my previous career before joining academia was as an engineer, manager, and project manager for a large nuclear utility). We got to talking engineering and he made the comment that it was too bad we couldn’t get back to the moon. I of course agreed and expressed the desire for our government to allocate funds for it. He surprised me by saying it wasn’t money that was the issue (although it would be if not for the following issue). What really prevents us from getting back to the moon is that we don’t remember how to build Saturn V rockets, Apollo capsules, and Lunar Modules. It seems after the end of the Apollo program management ordered all the plans put on microfiche and all but two of the paper copies destroyed. This was done, however, when there was talk of going back to the moon and engineers went to retrieve the plans, the microfiche had decayed into unusable form, the saved two paper copies had been water damaged and were no longer readable and no other copies could be found, and everyone who knew how to build the rockets, capsules, and modules were either dead or retired. Additionally, when the younger engineers began to reverse engineer these components they were stymied because they didn’t understand the technology from that time (the Apollo program used 1950s technology), technology had advanced so much that the engineers hadn’t been taught some of the fundamental issues faced by engineers of that time. In other words, we had forgotten the knowledge from the experience of solving the problems that prevented moon flights. (Note: the above is the opinion of the interviewee, but it does reflect what I’ve observed in the commercial nuclear industry) (Jennex, 2006).

As previously stated, KM can be defined as the practice of selectively applying knowledge from previous experiences of decision making to current and future decision making activities with the express purpose of improving organizational effectiveness (Jennex, 2005). The above shows that the space program attempted to implement KM, but they are an example of failed KM. They attempted to store relevant knowledge but when it came time to retrieve it, it couldn’t be retrieved and applied to the current decision making activity due to media volatility and a lack of capturing the relevant context that
makes the critical knowledge usable. This is one of the issues organizations must prevent, the inability to retrieve and use knowledge once it is captured.

The retired astronaut and I discussed this for awhile and it occurred to me that we are facing similar issues in other industries. The Information Technology industry is an example of where we have forgotten fundamental issues and their solutions. I was trained to program using the IBM PC and XT. Those who remember these machines recall that we were restricted to approximately 1 Megahertz CPU speeds, 56 Kilobytes of usable memory, and hard drive storage of 10 Megabytes. The techniques used at that time for memory management and performance optimization were invalidated by newer generations of computers that ran faster with more memory making it unnecessary to train current students in these techniques. Additionally, with today’s larger fixed drives (60 Gigabytes or more) there is no pressure on users to save only that which is necessary; the drives can hold it all; and if you need to move a lot of files there are Gigabyte sized flash drives. This is probably okay but what happens if we need to retrieve something critical? If we save everything it becomes difficult to find specific files, I know I’m guilty of this, I save all iterations of my papers and presentations and it is becoming difficult to organize my storage due to the thousands of files I am keeping (and often times gets me asking myself if I really need all these files). Several years ago I would have used risk management techniques to determine what file versions I truly could not afford to lose with the result that I would have had a fraction of the files to search through. (Jennex, 2006)

Additionally, what if we have to use an older machine or operating system or file management system to retrieve files? I recall my windows operating system corrupted a couple of years ago. I called the manufacturer’s help desk to see if there was a way to recover and was told to reformat using the recovery CD. This would cause me to lose my files and I asked about copying them. The help desk didn’t know how to do this but while I was talking to them I was fiddling with the computer and started it in DOS. I remembered how to move files using DOS commands and asked if that was an option. The help desk said they did not know DOS commands. To make a long story short I spent the next several minutes using basic DOS commands to backup my files on floppy disks while at the same time teaching the help desk how it could be done.

A final example is the commercial nuclear industry. The current generation of nuclear plants were designed and built by engineers who are now retiring or dead. This is a wealth of operational and design knowledge on using analog control and instrument systems, older material specifications, and older corrosion control systems that is no longer being taught to new engineers. Newer approaches rely on digital controls and displays, and newer materials with different corrosion control needs. Additionally, we have computerized processes that used to require manual calculations. As a young nuclear propulsion officer in the United States Navy I was taught to manually calculate estimated critical rod positions and reactor restart times (to name a few). These calculations are now done automatically and require little operator knowledge or input. This progress is good and is resulting in safer nuclear power plants, but I wonder what could happen if terrorists were able to successfully attack these new digital systems requiring operators to return to the old manual processes and analog systems. Would our operators know how it used to be done? Would we have the requisite knowledge and data to do it the old way? As a Year 2000 (Y2K) project manager for contingency planning for a large utility I learned that in many cases we no longer have the ability to backup our processes or systems using manual methods and that if we lost these components or systems we would not have the ability to maintain normal operations.
Storage Media

Is capturing knowledge enough? Hansen, et al. (1999) discusses the importance of a representation and storage strategy. The above space program situation is an example of having a strategy that identifies critical knowledge and stores it, but failed to identify a successful storage strategy. I don’t believe this case is unique. Over the last 20 years I have seen a series of storage solutions, from microfiche to 8 inch floppies, 5 ¼ inch floppies, 3 ½ inch floppies, flash drives, storage networks, hard drive clusters, etc. Also, formats have changed from Wordstar in DOS to Word in Windows with a variety of software in-between (Word Perfect, various versions of Word, etc.). This also applies to database management systems (Dbase, Paradox, etc.) and spreadsheet systems (Visicale, Lotus 123, etc.). What does this mean? Every time a standard changed I saw the most commonly used stored knowledge converted to the new standard, but the less used knowledge was left as is with the expectation that it would be converted later. Did later ever come? In many cases no, or at least not yet. So what is the issue? Potentially critical knowledge is now stored in a variety of formats and standards that organizations may not be able to read or retrieve from. Is there concern? I think there is but the concern is mild. Jennex (2008) found that use of knowledge had no correlation to its importance; in fact, it could almost be argued that knowledge that is seldom used is more valuable that that used frequently or even daily. Many don’t understand what this means until they try to retrieve something from an old format and others possibly look at this as a good thing. After all, sales of music and videos tend to increase every time we change format and/or media. Video has gone from Beta to Laserdisc to VHS and now to DVD, where will it go next? Music has moved from 78s to 45s to 8 tracks to cassettes to CD to MP3, and is still changing. Books are moving from paper to audio to electronic books. Each of these changes ultimately causes owners to re-purchase their favorite titles when their old machines no longer work. I think content producers and distributors see this as a good thing. But is it? I don’t think so; I think it only serves to keep us from facing the problem of lost data and knowledge.

Some Recommendations for Storage Issues

Bergeron (2002) has a fascinating book exploring the issue of media volatility and discussing how society will cope when the digital knowledge fails. He is not very optimistic. Can anything be done? Proposed actions include:

- Recognize consumer rights and require content producers and distributors when they change media and/or format to update products previously bought by consumers for the cost of the material. Consumers should not be forced to purchase new individual use copyrights when they already own them. This should force more organizations and individuals to consider the true costs of media and/or format changes and will raise awareness of how we are losing cultural treasures as after all, only those titles that are in consumer demand are re-mastered in the new media and/or format. As I get older I find this frustrating as it gets harder and harder to find playable versions of the music, videos, and books I grew up with and want to enjoy again (as an example, my favorite band, the Ozark Mountain Daredevils, had to buy back the rights to their music and re-issue their albums on CD themselves just to get it out to their fans).

- Organizations and individuals should use risk management techniques to select knowledge to be saved and continuously upgraded should media and/or formats change. As stated earlier, Jennex
(2008) found that there is no correlation between the importance of knowledge and its importance. Organizations should not use frequency of use as a guide to what knowledge should be converted. Organizations should apply risk management to determine the impact to the organization should that knowledge be lost. Organizations should establish an acceptable risk threshold and monitor how much risk they are assuming by not updating knowledge storage media/formats. Additionally, organizations should include aggregation assessments as much knowledge, when looked at alone, may seem to have minimal impact to the organization should it be lost. However, this same knowledge, when assessed as an aggregated whole with other related knowledge or all knowledge stored on the same media/format, may now have an unacceptable impact to the organization should it be lost.

• Finally, new technology and growing capacity is making it possible to capture everything. Is this a good thing? Again, I don’t think so as we are overwhelming ourselves with data and knowledge of little value and making it harder for us to find those true golden nuggets of knowledge that provide innovative solutions to key problems. Shenk (1997) discusses this trend that he calls “Data Smog.” His concern, and one I agree with, is that ultimately we will paralyze our decision making ability with an over abundance of information and knowledge. Managers and knowledge workers are afraid to make decisions on what to capture and what not to. The result is we capture so much because we can, not because there is a need. The problem is it makes retrieving critical knowledge harder as we have to search through these massive amounts of knowledge to find that which we need. Can we do anything about this? Again, yes we can. I am a strong proponent of the use of risk management techniques to identify critical knowledge for capture and retention. I strongly dislike the idea of capturing everything. Will we miss something at some point? Probably, but again, if we do our jobs right, it won’t be impossible to recover from this.

Using Knowledge Correctly

Davenport and Prusak (1998) view knowledge as an evolving mix of framed experience, values, contextual information and expert insight that provides a framework for evaluating and incorporating new experiences and information. They found that in organizations, knowledge often becomes embedded in artifacts such as documents, video, audio or repositories and in organizational routines, processes, practices, and norms. They also say that for knowledge to have value it must include the human additions of context, culture, experience, and interpretation. Nonaka (1994) expands this view by stating that knowledge is about meaning in the sense that it is context-specific. This implies that users of knowledge must understand and have experience with the context, or surrounding conditions and influences, in which the knowledge is generated and used for it to have meaning to them. This also implies that for a knowledge repository to be useful it must also store the context in which the knowledge was generated. That knowledge is context specific argues against the idea that knowledge can be applied universally, however it does not argue against the concept of organizational knowledge. Organizational knowledge is considered to be an integral component of what organizational members remember and use meaning that knowledge is actionable.

What this means is that it is not enough to just capture knowledge and that taking action on knowledge without considering context and culture can lead to applying the wrong knowledge to the wrong situation, usually resulting in the wrong decisions being made. There are many examples of this being
done but the one chosen for discussion is current and involves the stimulus package and budget that the United States government pushed through in early 2009.

Why this story? Consider that proponents of stimulus spending point to Roosevelt’s public works spending as that government action that led to the end of the Great Depression. Opponents of stimulus spending point to Japan’s public works spending in the 1990s that resulted in a huge public debt with little economic stimulus (Fackler, 2009) as the reason not to follow the stimulus spending plan. Which is right? The purpose of this chapter is not to make a political statement so the which is right question will not be answered. What will be answered is: are the examples being applied correctly?

The first story is the Roosevelt’s public works program, the New Deal, used to spur the economy. Wikipedia (2009) describes the New Deal as the sequence of central economic planning and economic stimulus programs Roosevelt initiated between 1933 and 1938 with the goal of giving aid to the unemployed, reform of business and financial practices, and recovery of the economy during The Great Depression. The enactment of New Deal policies lasted from 1933 through 1939 and many consider them crucial to ending the Great Depression in the United States. Did these policies end the Great Depression? The opinions are mixed, it is agreed that the New Deal put people to work and created jobs, but most of these jobs were temporary and did not add to the economy. Many argue the Great Depression did not end until the onset of World War II with the resulting mobilization ending the Great Depression. The issue is that comparing the Great Depression and the remedies used to fight it may not be applicable to the current situation. Those using this story need to ensure that the context of the Great Depression matches that of today and I don’t think it does. A KM approach would be to compare the political, economic, social, and legal environments in the 1930s to those in 2009. I expect they will be different but that doesn’t make the story irrelevant to today, it just needs to be qualified and that context which matches identified and that context which doesn’t analyzed for importance to applying this knowledge to the current situation. I don’t seeing this being done by the various political pundits arguing the pros and cons of the stimulus package.

The second story is Japan’s public works stimulus program from the 1990s. Fackler (2009) describes how this program created lots of infrastructure projects in Japan with the result that many projects were completed that weren’t really needed driving Japan to having the largest public debt of any developed country. Many are using this result to say that the United States should not have a public works program. However, does the context match? Japan in the 1990s is probably much closer in context the United States of 2009 than the Great Depression is, with one major difference. Japan’s infrastructure was fairly well destroyed during World War II requiring it to be rebuilt during the late 1940s, 1950s, and 1960s. This is important because the infrastructure projects of the 1990s were building on to this relatively new infrastructure. The United States in contrast did not suffer destruction of its infrastructure during World War II and instead is getting by in 2009 with infrastructure that was largely built in the early 1900s. This key difference in context needs to be considered when comparing Japan to the United States as it may very well be that the United States would benefit greatly from infrastructure projects that did Japan little to no good. Again, those political pundits using this story to argue for or against the current stimulus package need to analyze the context of each situation and use that to guide the discussion.

One final note, the above stories have not addressed culture. Both stories could be argued that cultural differences are significant between the story and the proposed application. However, due to chapter length considerations those differences are not addressed. This doesn’t mean they aren’t important, just too long to discuss here.
CONCLUSION

Why do we need Knowledge Management? We need KM because we need a formal process to help organizations identify, capture, store, and retrieve critical knowledge. We need KM processes to help organizations deal with changing storage strategies. We need KM to help us deal with the transience of knowledge workers. We need KM processes to help organizations manage a glut of knowledge. We need KM to ensure we apply knowledge correctly to differing situations. Ultimately, we need KM to help organizations make sense of what they know, to know what they know, and to effectively use what they know.

Murray E. Jennex
Editor

REFERENCES


