The field of artificial intelligence evolves with the objective of developing intelligent machines that could think the way humans do. Perception-generated feelings and feeling-driven actions are two of the most important aspects of human intelligence. These require a knowledge system in which subjective impression and emotions of human’s responses to the surroundings could be described and processed. Psychological impression or human emotions are unlikely to be fully captured, but these may be apparent at the subconscious level. Kansei Engineering has been developed to measure, analyze, and represent such information which is defined as Kansei. Research into Kansei involves determining which sensory attributes elicit particular subjective responses from people, and then designing a product, a machine or a system using the attributes which elicit the desired responses.

Among these technologies involved in Kansei Engineering, soft computing is undoubtedly the most popular and important approach of computational intelligence where artificial neural networks, fuzzy logic, rough set theory, evolutionary computation and other hybrid techniques are used to the knowledge representation and decision making of humans. Due to its tolerance to imprecision, uncertainty and partial truth, soft computing deals well with human related systems. Since the process of solving real world problems by inducing the concept of Kansei often interacts with human and involves human’s affections with uncertainty, imprecision and dependence on the context, the recent advances in soft computing and Kansei engineering, and the fusion of these two fields are considered to be critical. The book, Kansei Engineering and Soft Computing: Theories and Practice, here KESC for short, is one of the first texts to focus on the topics related to these fields.

As soft computing steps into the field of Kansei engineering, one needs to go from the development and enhancement of modeling, algorithm development, computer simulation, and implementation in useful prototypes for rigorous testing and evaluation. Applications of soft computing to kansei related real world problems are sufficiently complex. This book, KESC, edited by Dr. Ying Dai, Dr. Basabi Chakraborty, and Dr. Minghui Shi, provides a comprehensive overview of the theories, methodologies, and recent developments in the field of Kansei engineering towards this end. The book covers such important topics as the framework of soft computing, up-to-date soft computing techniques and their applications in Kansei engineering, the practice in measuring, analyzing and representing Kansei, and the Kansei based product design.

KESC is a book well-organized, clearly presented and illustrated by many examples and many experiments. It is a must reading for ones interested in acquiring an understanding of what Kansei engineering is, developing an ability to employ it for human centric systems, and utilizing the soft computing tech-
Nanning Zheng, Ph.D.
IEEE Fellow
Professor and Director
Institute of Artificial Intelligence and Robotics,
Xi’an Jiaotong University, China

Nanning Zheng (IEEE SM’93-F’06) graduated from the Department of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China, in 1975, and received the MS degree in information and control engineering from Xi’an Jiaotong University in 1981 and the PhD degree in electrical engineering from Keio University, Yokohama, Japan, in 1985. He joined Xi’an Jiaotong University in 1975, and he is currently a Professor and the Director of the Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University. His research interests include computer vision, pattern recognition and image processing, and hardware implementation of intelligent systems. Dr. Zheng became a member of the Chinese Academy of Engineering in 1999, and he is the Chinese Representative on the Governing Board of the International Association for Pattern Recognition. He also serves as an executive deputy editor of the Chinese Science Bulletin.