Contents

Volume 1

Section I. Fundamental Concepts and Theories

This section serves as a foundation for this exhaustive reference tool by addressing crucial theories essential to the fundamental understanding of machine learning. Chapters found within these pages provide an excellent framework in which to position machine learning within the field of information science and technology. Insight regarding the critical incorporation of global measures into machine learning is addressed, while crucial stumbling blocks of this field are explored. With 10 chapters comprising this foundational section, the reader can learn and chose from a compendium of expert research on the elemental theories underscoring the machine learning discipline.

Chapter 1.1. A Comparison of Human and Computer Information Processing................................. 1
 Brian Whitworth, Massey University, New Zealand
 Hokyoung Ryu, Massey University, New Zealand

Chapter 1.2. Machine Learning .. 13
 João Gama, University of Porto, Portugal
 André C.P.L.F. de Carvalho, University of São Paulo, Brazil

Chapter 1.3. Machine Learning Through Data Mining ... 23
 Diego Liberati, Italian National Research Council, Italy

Chapter 1.4. Calibration of Machine Learning Models .. 32
 Antonio Bella, Universidad Politécnica de Valencia, Spain
 César Ferri, Universidad Politécnica de Valencia, Spain
 José Hernández-Orallo, Universidad Politécnica de Valencia, Spain
 María José Ramírez-Quintana, Universidad Politécnica de Valencia, Spain
Section II. Development and Design Methodologies

This section provides in-depth coverage of conceptual architecture frameworks to provide the reader with a comprehensive understanding of the emerging developments within the field of machine learning. Research fundamentals imperative to the understanding of developmental processes within machine learning are offered. From broad examinations to specific discussions on methodology, the research found within this section spans the discipline while offering detailed, specific discussions. From basic designs to abstract development, these chapters serve to expand the reaches of development and design technologies within the machine learning community. This section includes more than 10 contributions from researchers throughout the world on the topic of machine learning.

Chapter 2.1. Machine Learning as a Commonsense Reasoning Process
Xenia Naidenova, Military Medical Academy, Russia

Chapter 2.2. Motivated Learning for Computational Intelligence
Janusz A. Starzyk, Ohio University at Athens, USA

Chapter 2.3. Designing a Computational Model of Learning
David Gibson, CurveShift, Inc., USA
Chapter 2.4. Intelligent MAS in System Engineering and Robotics ... 175
G. Nicolás Marichal, University of La Laguna, Spain
Evelio J. González, University of La Laguna, Spain

Chapter 2.5. Information Hiding by Machine Learning: A Method of Key Generation for Information Extracting Using Neural Network ... 183
Kensuke Naoe, Keio University, Japan
Hideyasu Sasaki, Ritsumeikan University, Japan
Yoshiyasu Takefuji, Keio University, Japan

Chapter 2.6. Rule Engines and Agent-Based Systems.. 211
Agostino Poggi, Università di Parma, Italy
Michele Tomaiuolo, Università di Parma, Italy

Chapter 2.7. Higher Order Neural Network Architectures for Agent-Based Computational Economics and Finance .. 219
John Seiffertt, Missouri University of Science and Technology, USA
Donald C. Wunsch II, Missouri University of Science and Technology, USA

Chapter 2.8. A Bayesian Based Machine Learning Application to Task Analysis 234
Shu-Chiang Lin, Purdue University, USA
Mark R. Lehto, Purdue University, USA

Chapter 2.9. Combining Classifiers and Learning Mixture-of-Experts 243
Lei Xu, Chinese University of Hong Kong, Hong Kong & Peking University, China
Shun-ichi Amari, Brain Science Institute, Japan

Chapter 2.10. Designing Unsupervised Hierarchical Fuzzy Logic Systems 253
M. Mohammadian, University of Canberra, Australia

Chapter 2.11. A Self-Organizing Neural Network to Approach Novelty Detection 262
Marcelo Keese Albertini, University of São Paulo, Brazil
Rodrigo Fernandes de Mello, University of São Paulo, Brazil

Christian Hillbrand, University of Liechtenstein, Principality of Liechtenstein

Václav Snášel, VSB—Technical University of Ostrava, Czech Republic
Jan Platoš, VSB—Technical University of Ostrava, Czech Republic
Pavel Krömer, VSB—Technical University of Ostrava, Czech Republic
Ajith Abraham, Norwegian University of Science and Technology, Norway

Ying Guo, CSIRO ICT Centre, Australia
Rongxin Li, CSIRO ICT Centre, Australia

Chapter 2.15. Modelling Gene Regulatory Networks Using Computational Intelligence Techniques

Ramesh Ram, Monash University, Australia
Madhu Chetty, Monash University, Australia

Section III. Tools and Technologies

This section presents an extensive coverage of various tools and technologies available in the field of machine learning that practitioners and academicians alike can utilize to develop different techniques. These chapters enlighten readers about fundamental research on the many methods used to facilitate and enhance the integration of this worldwide phenomenon by exploring the usage of artificial intelligence, meta-heuristics, security, and adaptive algorithms, to name a few. It is through these rigorously researched chapters that the reader is provided with countless examples of the up-and-coming tools and technologies emerging from the field of machine learning. With 20 chapters, this section offers a broad treatment of some of the many tools and technologies within the machine learning and IT community.

Chapter 3.1. Application of Machine Learning Techniques to Predict Software Reliability

Ramakanta Mohanty, Berhampur University, India
V. Ravi, Institute for Development and Research in Banking Technology, India
M. R. Patra, Berhampur University, India

Chapter 3.2. Application of Artificial Immune Systems Paradigm for Developing Software Fault Prediction Models

Cagatay Catal, Information Technologies Institute, Turkey
Soumya Banerjee, Birla Institute of Technology, International Center, Mauritius

Chapter 3.3. A Recovery-Oriented Approach for Software Fault Diagnosis in Complex Critical Systems

Gabriella Carrozza, SESM s.c.a.r.l. - a Finmeccanica Company, Italy
Roberto Natella, Università degli Studi di Napoli Federico II, Italy

Chapter 3.4. Artificial Intelligence Techniques for Unbalanced Datasets in Real World Classification Tasks

Marco Vannucci, Scuola Superiore Sant’Anna, Italy
Valentina Colla, Scuola Superiore Sant’Anna, Italy
Silvia Cateni, Scuola Superiore Sant’Anna, Italy
Mirko Sgarbi, Scuola Superiore Sant’Anna, Italy

Chapter 3.5. Hybrid Meta-Heuristics Based System for Dynamic Scheduling

Ana Maria Madureira, Polytechnic Institute of Porto, Portugal
Chapter 3.6. Differential Learning Expert System in Data Management .. 436
 R. Manjunath, Bangalore University, India

Chapter 3.7. Hybrid Intelligent Diagnosis Approach Based on Neural Pattern Recognition and
Fuzzy Decision-Making ... 444
 Amine Chohra, Paris-East University, France
 Nadia Kanaoui, Paris-East University, France
 Véronique Amarger, Paris-East University, France
 Kurosh Madani, Paris-East University, France

Chapter 3.8. Machine Learning Approach to Search Query Classification 467
 Isak Taksa, Baruch College, City University of New York, USA
 Sarah Zelikovitz, The College of Staten Island, City University of New York, USA
 Amanda Spink, Queensland University of Technology, Australia

Chapter 3.9. Machine Learning in Morphological Segmentation .. 483
 O. Lezoray, Université de Caen Basse-Normandie, France
 G. Lebrun, Université de Caen Basse-Normandie, France
 C. Meurie, INRETS-LEOST, France
 C. Charrier, Université de Caen Basse-Normandie, France
 A. Elmotataz, Université de Caen Basse-Normandie, France
 M. Lecluse, Centre Hospitalier Public du Cotentin, France
 H. Elie, Centre Hospitalier Public du Cotentin, France

 Tich Phuoc Tran, University of Technology, Australia
 Pohsiang Tsai, University of Technology, Australia
 Tony Jan, University of Technology, Australia
 Xiangjian He, University of Technology, Australia

Chapter 3.11. A Machine Learning Based Meta-Scheduler for Multi-Core Processors 522
 Jitendra Kumar Rai, University of Hyderabad and ANURAG, India
 Atul Negi, University of Hyderabad, India
 Rajeev Wankar, University of Hyderabad, India
 K. D. Nayak, ANURAG, India

 Jie Tang, Tsinghua University, China
 Duo Zhang, University of Illinois, USA
 Limin Yao, Tsinghua University, China
 Yi Li, Tsinghua University, China

 Manuel Martín-Merino Acera, University Pontificia of Salamanca, Spain
Chapter 3.14. Non-Topical Classification of Query Logs Using Background Knowledge 598
Isak Taksa, Baruch College, City University of New York, USA
Sarah Zelikovitz, The College of Staten Island, City University of New York, USA
Amanda Spink, Queensland University of Technology, Australia

Chapter 3.15. Prediction of Compound-Protein Interactions with Machine Learning Methods 616
Yoshihiro Yamanishi, Mines ParisTech, Institut Curie, Inserm U900, France
Hisashi Kashima, IBM Tokyo Research Laboratory, Japan

Chapter 3.16. Secure Key Generation for Static Visual Watermarking by Machine Learning in
Intelligent Systems and Services ... 631
Kensuke Naoe, Keio University, Japan
Hideyasu Sasaki, Ritsumeikan University, Japan
Yoshiyasu Takefuji, Keio University, Japan

Chapter 3.17. Adaptive Ensemble Multi-Agent Based Intrusion Detection Model 647
Tarek Helmy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Chapter 3.18. Class Prediction in Test Sets with Shifted Distributions 660
Óscar Pérez, Universidad Autónoma de Madrid, Spain
Manuel Sánchez-Montañés, Universidad Autónoma de Madrid, Spain

A Comparative Study ... 668
Chih-Fong Tsai, National Central University, Taiwan
Yu-Hsin Lu, National Chung Cheng University, Taiwan
Yu-Feng Hsu, National Sun Yat-Sen University, Taiwan

Chapter 3.20. Bankruptcy Prediction through Artificial Intelligence 684
Y. Goletsis, University of Ioannina, Greece
C. Papaloukas, University of Ioannina, Greece
Th. Exarhos, University of Ioannina, Greece
C.D. Katsis, University of Ioannina, Greece

Section IV. Utilization and Application

This section discusses a variety of applications and opportunities available that can be considered by
practitioners in developing viable and effective machine learning programs and processes. This sec-
tion includes 20 chapters that review topics from Greece, The Netherlands, Australia, the United States,
and many more countries, with dozens of institutions and cultures from around the world represented.
A variety of chapters discuss machine learning in a wide range of settings (medicine, higher educa-
tion, business, finance, music, etc.). Contributions included in this section provide excellent coverage
of today’s IT community and how research into machine learning is impacting the social fabric of our
present-day global village.
Chapter 4.1. Machine Learning and Data Mining in Bioinformatics ...695
George Tzanis, Aristotle University of Thessaloniki, Greece
Christos Berberidis, Aristotle University of Thessaloniki, Greece
Ioannis Vlahavas, Aristotle University of Thessaloniki, Greece

Chapter 4.2. Machine Learning for Biometrics ...704
Albert Ali Salah, Centre for Mathematics and Computer Science (CWI), The Netherlands

Chapter 4.3. Pattern Discovery from Biological Data ...724
Jesmin Nahar, Central Queensland University, Australia
Kevin S. Tickle, Central Queensland University, Australia
A.B.M. Shawkat Ali, Central Queensland University, Australia

Chapter 4.4. Computer-Aided Detection and Diagnosis of Breast Cancer Using Machine Learning, Texture and Shape Features ..769
Geraldo Braz Júnior, Federal University of Maranhão, Brazil
Leonardo de Oliveira Martins, Pontifical Catholic University of Rio de Janeiro, Brazil
Aristófanes Corrêa Silva, Federal University of Maranhão, Brazil
Anselmo Cardoso de Paiva, Federal University of Maranhão, Brazil

Volume II

Chapter 4.5. Ensemble of Neural Networks for Automated Cell Phenotype Image Classification ..793
Loris Nanni, Università di Bologna, Italy
Alessandra Lumini, Università di Bologna, Italy

Chapter 4.6. Image Processing and Machine Learning Techniques for the Segmentation of cDNA Microarray Images ..817
Nikolaos Giannakeas, University of Ioannina, Greece
Dimitrios I. Fotiadis, University of Ioannina, Greece

Chapter 4.7. Machine Learning for Automated Polyp Detection in Computed Tomography Colonography ..830
Abhilash Alexander Miranda, Université Libre de Bruxelles, Belgium
Olivier Caelen, Université Libre de Bruxelles, Belgium
Gianluca Bontempi, Université Libre de Bruxelles, Belgium

Chapter 4.8. Machine Learning for Brain Image Segmentation ..851
Jonathan Morra, University of California Los Angeles, USA
Zhuowen Tu, University of California Los Angeles, USA
Arthur Toga, University of California Los Angeles, USA
Paul Thompson, University of California Los Angeles, USA
Chapter 4.9. Machine Learning for Clinical Data Processing ... 875
 Guo-Zheng Li, Tongji University, China

Chapter 4.10. A Simulation of Temporally Variant Agent Interaction via Passive Inquiry 898
 Adam J. Conover, Towson University, USA

Chapter 4.11. A Simulation of Temporally Variant Agent Interaction via Belief Propagation......... 913
 Adam J. Conover, Towson University, USA

Chapter 4.12. Application of Uncertain Variables to Knowledge-Based Resource Distribution 928
 Donat Orski, Wroclaw University of Technology, Poland

Chapter 4.13. Applying Commonsense Reasoning to Place Identification .. 951
 Marco Mamei, Università di Modena e Reggio Emilia, Italy

Chapter 4.14. Machine Learning Enhancing Adaptivity of Multimodal Mobile Systems 969
 Floriana Esposito, Università di Bari, Italy
 Teresa M.A. Basile, Università di Bari, Italy
 Nicola Di Mauro, Università di Bari, Italy
 Stefano Ferilli, Università di Bari, Italy

 Nadeem Bhatti, Fraunhofer IGD, Germany
 Dieter W. Fellner, TU Darmstadt, Graphisch-Interaktive Systeme & Fraunhofer IGD, Germany

Chapter 4.16. Learning Algorithms for RBF Functions and Subspace Based Functions 1034
 Lei Xu, Chinese University of Hong Kong & Beijing University, PR China

Chapter 4.17. Annotating Images by Mining Image Search ... 1066
 Xin-Jing Wang, Microsoft Research Asia, China
 Lei Zhang, Microsoft Research Asia, China
 Xirong Li, Microsoft Research Asia, China
 Wei-Ying Ma, Microsoft Research Asia, China

 Artem A. Lenskiy, University of Ulsan, South Korea
 Jong-Soo Lee, University of Ulsan, South Korea

Chapter 4.19. Empirical Evaluation of Ensemble Learning for Credit Scoring 1108
 Gang Wang, Fudan University, PR China & City University of Hong Kong, Hong Kong
 Jin-xing Hao, City University of Hong Kong, Hong Kong
 Jian Ma, City University of Hong Kong, Hong Kong
 Li-hua Huang, Fudan University, PR China
Section V. Organizational and Social Implications

This section includes a wide range of research pertaining to the social and behavioral impact of machine learning around the world. Chapters introducing this section critically analyze and discuss trends in information conservation and functional testing. Additional chapters included in this section look at emotional memory and emotion detection, multi-agency, and knowledge discovery. Also investigating a concern within the field of machine learning is research that discusses the effect of machine learning on drug discovery and development in the pharmaceutical/healthcare industry. With 20 chapters, the discussions presented in this section offer research into the integration of global machine learning as well as implementation of ethical considerations for all organizations. This section even contains looks at sports video games, tourism, and biomedicine, and how managers within these industries can use machine learning to grow their enterprises.

Chapter 5.1. Conservation of Information (COI): Geospatial and Operational Developments in E-Health and Telemedicine for Virtual and Rural Communities

Max E. Stachura, Medical College of Georgia, USA
Elena V. Astapova, Medical College of Georgia, USA
Hui-Lien Tung, Paine College, USA
Donald A. Sofge, Naval Research Laboratory, USA
James Grayson, Augusta State University, USA
Margo Bergman, Michael E. DeBakey VA Medical Center, USA
Joseph Wood, US Army, USA
William Lawless, Paine College, USA

Chapter 5.2. Computational Intelligence for Functional Testing

C. Peng Lam, Edith Cowan University, Australia

Chapter 5.3. An Immune Inspired Algorithm for Learning Strategies in a Pursuit-Evasion Game

Małgorzata Łucińska, Kielce University of Technology, Poland
Slawomir T. Wierzchoń, Polish Academy of Sciences, Poland & University of Gdańsk, Poland

Chapter 5.4. Artificial Intelligence in Software Engineering: Current Developments and Future Prospects

Farid Meziane, University of Salford, UK
Sunil Vadera, University of Salford, UK
Chapter 5.5. FOL Learning for Knowledge Discovery in Documents .. 1237
 Stefano Ferilli, Università degli Studi di Bari, Italy
 Floriana Esposito, Università degli Studi di Bari, Italy
 Marenglen Biba, Università degli Studi di Bari, Italy
 Teresa M.A. Basile, Università degli Studi di Bari, Italy
 Nicola Di Mauro, Università degli Studi di Bari, Italy

Chapter 5.6. Computer-Based Learning Environments with Emotional Agents 1263
 Dorel Gorga, University of Geneva, Switzerland
 Daniel K. Schneider, University of Geneva, Switzerland

Chapter 5.7. Emotional Memory and Adaptive Personalities ... 1292
 Anthony G. Francis Jr., Google, USA
 Manish Mehta, Georgia Institute of Technology, USA
 Ashwin Ram, Georgia Institute of Technology, USA

Chapter 5.8. Hybrid Emotionally Aware Mediated Multiagency ... 1314
 Giovanni Vincenti, Gruppo Vincenti, Italy
 James Braman, Towson University, USA

Chapter 5.9. Automatic Detection of Emotion in Music: Interaction with Emotionally Sensitive
 Machines ... 1330
 Cyril Laurier, Universitat Pompeu Fabra, Spain
 Perfecto Herrera, Universitat Pompeu Fabra, Spain

Chapter 5.10. Improving Automated Planning with Machine Learning 1355
 Susana Fernández Arregui, Universidad Carlos III de Madrid, Spain
 Sergio Jiménez Celorrio, Universidad Carlos III de Madrid, Spain
 Tomás de la Rosa Turbides, Universidad Carlos III de Madrid, Spain

Chapter 5.11. Diagnostic Support Systems and Computational Intelligence: Differential
 Diagnosis of Hepatic Lesions from Computed Tomography Images 1374
 Stavroula G. Mougiakakou, National Technical University of Athens, Greece
 Ioannis K. Valavanis, National Technical University of Athens, Greece
 Alexandra Nikita, University of Athens, Greece & DIAKENTRO, Diagnostic Imaging
 Center for the Woman and Child, Greece
 Konstantina S. Nikita, National Technical University of Athens, Greece

Chapter 5.12. Computer Aided Knowledge Discovery in Biomedicine ... 1389
 Vanathi Gopalakrishnan, University of Pittsburgh, USA

Chapter 5.13. Computerised Decision Support for Women’s Health Informatics 1404
 David Parry, Auckland University of Technology, New Zealand

Chapter 5.14. Translation of Biomedical Terms by Inferring Rewriting Rules 1417
 Vincent Claveau, IRISA-CNRS, France
Chapter 5.15. Machine Learning in Personalized Anemia Treatment .. 1434
Adam E. Gaweda, University of Louisville, USA

Chapter 5.16. An Intelligent Algorithm for Home Sleep Apnea Test Device ... 1445
Ahsan H. Khandoker, The University of Melbourne, Australia

Chapter 5.17. Application of Machine Learning in Drug Discovery and Development 1460
Shuxing Zhang, The University of Texas at M.D. Anderson Cancer Center, USA

Volume III

Chapter 5.18. Learning and Prediction of Complex Molecular Structure-Property Relationships:
Issues and Strategies for Modeling Intestinal Absorption for Drug Discovery 1482
Rahul Singh, San Francisco State University, USA

Chapter 5.19. Artificial Intelligence and Rubble-Mound Breakwater Stability....................................... 1499
Gregorio Iglesias Rodriguez, University of Santiago de Compostela, Spain
Alberte Castro Ponte, University of Santiago de Compostela, Spain
Rodrigo Carballo Sanchez, University of Santiago de Compostela, Spain
Miguel Angel Losada Rodriguez, University of Granada, Spain

Chapter 5.20. Decision Support System for Greenhouse Tomato Yield Prediction using
Artificial Intelligence Techniques .. 1507
F. Zhang, University of Warwick, UK
D. D. Iliescu, University of Warwick, UK
E. L. Hines, University of Warwick, UK
M. S. Leeson, University of Warwick, UK
S. R. Adams, University of Warwick, UK

Section VI. Managerial Impact

This section presents contemporary coverage of the social implications of machine learning, more specifically related to the corporate and managerial utilization of information sharing technologies and applications, and how these technologies can be facilitated within organizations. Core ideas such as human resource management, supply chain forecasting, energy allocation, and software development technologies all pervade the section to give a clearer picture of the impact machine learning has on management styles across different industries. Equally as crucial, chapters within this section discuss how leaders can manage corporate responsibility in order to foster desired intangibles in their employees.

Chapter 6.1. Introducing AI and IA into a Non Computer Science Graduate Programme............... 1525
Ioanna Stamatopoulou, CITY College, Greece
Maria Fasli, University of Essex, UK
Petros Kefalas, CITY College, Greece
Chapter 6.2. Distributed Intelligence for Constructing Economic Models ... 1538
 Ting Yu, University of Sydney, Australia

Chapter 6.3. A Computational Intelligence Approach to Supply Chain Demand Forecasting 1551
 Nicholas Ampazis, University of the Aegean, Greece

Chapter 6.4. Artificial Intelligence Applied to Natural Resources Management 1566
 Diana F. Adamatti, Universidade Federal do Rio Grande (FURG), Brasil
 Marilton S. de Aguiar, Universidade Federal de Pelotas (UFPel), Brasil

Chapter 6.5. Balance Modelling and Implementation of Flow Balance for Application in Air Traffic Management .. 1583
 Bueno Borges de Souza, University of Brasilia, Brazil
 Li Weigang, University of Brasilia, Brazil
 Antonio Marcio Ferreira Crespo, First Integrated Center of Air Defense and Air Traffic Control-CINDACTA I, Brazil
 Victor Rafael Rezende Celestino, TRIP Linhas Aereas S/A, Brazil

Chapter 6.6. Computational Intelligence for Information Technology Project Management 1601
 Robert J. Hammell II, Towson University, USA
 Julie Hoksbergen, Towson University, USA
 James Wood, Towson University, USA
 Mark Christensen, Towson University, USA

Chapter 6.7. Cost-Sensitive Learning in Medicine ... 1625
 Alberto Freitas, University of Porto & CINTESIS, Portugal
 Pavel Brazdil, LIAAD-INESC Porto L.A., Portugal & University of Porto, Portugal
 Altamiro Costa-Pereira, University of Porto, Portugal & CINTESIS, Portugal

Chapter 6.8. Data Warehousing and Decision Support in Mobile Wireless Patient Monitoring 1642
 Barin N. Nag, Towson University, USA
 Mark Siegal, National Library of Medicine, USA

Chapter 6.9. Forecasting Supply Chain Demand Using Machine Learning Algorithms 1652
 Réal Carbonneau, HEC Montréal, Canada
 Rustam Vahidov, Concordia University, Canada
 Kevin Laframboise, Concordia University, Canada

Chapter 6.10. Machine Learning and Financial Investing ... 1687
 Jie Du, UMBC, USA
 Roy Rada, UMBC, USA
Section VII. Critical Issues

This section contains 10 chapters giving a wide variety of perspectives on machine learning and its implications. Such perspectives include structure learning, information overload, and cognition, among others. The section also discusses new ethical considerations within machine learning, looking at how machines can adapt a sort of “conscience” when applying their learning techniques towards gaining a sort of morally independent agency. Within the chapters, the reader is presented with an in-depth analysis of the most current and relevant issues within this growing field of study. Crucial questions are addressed and alternatives offered, such as the role of culture and intercultural competence within machine learning enterprises.

Chapter 7.1. Problems for Structure Learning: Aggregation and Computational Complexity........ 1699
 Frank Wimberly, Carnegie Mellon University (retired), USA
 David Danks, Carnegie Mellon University, USA
 Clark Glymour, Carnegie Mellon University, USA
 Tianjiao Chu, University of Pittsburgh, USA

Chapter 7.2. Granular Computing and Human-Centricity in Computational Intelligence........ 1721
 Witold Pedrycz, University of Alberta, Canada & Polish Academy of Sciences, Poland

Chapter 7.3. Walking the Information Overload Tightrope... 1736
 A. Pablo Iannone, Central Connecticut State University, USA

Chapter 7.4. Moral Emotions for Autonomous Agents... 1753
 Antoni Gomila, University Illes Balears, Spain
 Alberto Amengual, International Computer Science Institute, USA

Chapter 7.5. Artificial Moral Agency in Technoethics... 1767
 John P. Sullins, Sonoma State University, USA

Chapter 7.6. Emotions, Diffusive Emotional Control and the Motivational Problem for Autonomous Cognitive Systems... 1784
 C. Gros, J.W. Goethe University Frankfurt, Germany

Chapter 7.7. Embodying Cognition: A Morphological Perspective 1798
 David Casacuberta, Universitat Autònoma de Barcelona, Spain
 Saray Ayala, Universitat Autònoma de Barcelona, Spain
 Jordi Vallverdú, Universitat Autònoma de Barcelona, Spain

Chapter 7.8. A Cognitive Computational Knowledge Representation Theory 1819
 Mehdi Najjar, University of Sherbrooke, Canada
 André Mayers, University of Sherbrooke, Canada

Chapter 7.9. Noble Ape’s Cognitive Simulation: From Agar to Dreaming and Beyond.......... 1839
 Thomas S. Barbalet, Noble Ape, USA
Section VIII. Emerging Trends

This section highlights research potential within the field of machine learning while exploring uncharted areas of study for the advancement of the discipline. Beginning this section are two fantastic chapters: “Learning with Partial Supervision” by Abdelhamid Bouchachia, and “Brain-Like Processing and Classification of Chemical Data” by Michael Schmuker and Gisbert Schneider. These two chapters are an excellent introduction to the section because they detail two emerging trends within the field of machine learning: supervision (or the lack thereof) and brain-like processing. As machines adapt and evolve, the amount of programming required on the front-end is increasing, but learning techniques require less and less maintenance and upkeep as machines continue to learn on their own.

Chapter 8.1. Learning with Partial Supervision
Abdelhamid Bouchachia, University of Klagenfurt, Austria

Chapter 8.2. Brain-Like Processing and Classification of Chemical Data: An Approach Inspired by the Sense of Smell
Michael Schmuker, Freie Universität Berlin, Germany
Gisbert Schneider, Johann-Wolfgang-Goethe Universität, Germany

Chapter 8.3. Modern Approaches to Software Engineering in the Compositional Era
Ali Dogru, Middle Eastern Technical University, Turkey
Pinar Senkul, Middle Eastern Technical University, Turkey
Ozgur Kaya, Middle Eastern Technical University, Turkey

Chapter 8.4. Pattern Discovery as Event Association
Andrew K.C. Wong, University of Waterloo, Canada
Yang Wang, Pattern Discovery Technology, Canada
Gary C.L. Li, University of Waterloo, Canada

Chapter 8.5. A Survey of Optimized Learning Pathway Planning and Assessment Paper Generation with Swarm Intelligence
Lung-Hsiang Wong, National Institute of Education, Singapore
Chee-Kit Looi, National Institute of Education, Singapore

Chapter 8.6. A Next Generation Technology Victim Location and Low Level Assessment Framework for Occupational Disasters Caused by Natural Hazards
Nik Bessis, University of Derby, UK
Eleana Asimakopoulou, University of Bedfordshire, UK
Peter Norrington, University of Bedfordshire, UK
Suresh Thomas, University of Bedfordshire, UK
Ravi Varaganti, University of Bedfordshire, UK
Chapter 8.7. Facial Expression Analysis by Machine Learning .. 1961
Siu-Yeung Cho, Nanyang Technological University, Singapore
Teik-Toe Teoh, Nanyang Technological University, Singapore
Yok-Yen Nguwi, Nanyang Technological University, Singapore

Chapter 8.8. Discovering Semantics from Visual Information .. 1981
Zhiyong Wang, University of Sydney, Australia
Dagan Feng, University of Sydney, Australia & Hong Kong Polytechnic University, China

Chapter 8.9. From Biomedical Image Analysis to Biomedical Image Understanding Using Machine Learning .. 2010
Eduardo Romero, National University of Colombia, Colombia
Fabio González, National University of Colombia, Colombia

Chapter 8.10. The Application of Machine Learning Technique for Malaria Diagnosis 2035
C. Ugwu, University of Port Harcourt, Nigeria
N. L. Onyejegbu, University of Port Harcourt, Nigeria
I. C. Obagbuwa, Lagos State University, Nigeria

Chapter 8.11. Application of Machine Learning Techniques for Railway Health Monitoring 2044
G. M. Shafiullah, Central Queensland University, Australia
Adam Thompson, Central Queensland University, Australia
Peter J. Wolfs, Curtin University of Technology, Australia
A. B. M. Shawkat Ali, Central Queensland University, Australia

Chapter 8.12. Explorative Data Analysis of In-Vitro Neuronal Network Behavior Based on an Unsupervised Learning Approach ... 2068
A. Maffezzoli, Università degli Studi di Milano-Bicocca, Italy
E. Wanke, Università degli Studi di Milano-Bicocca, Italy

Mohamed M. Mostafa, Gulf University for Science and Technology, Kuwait

Gulden Uchyigit, University of Brighton, UK

Chapter 8.15. Dependency Parsing: Recent Advances ... 2117
Ruket Çakıcı, University of Edinburgh, UK