Foreword

The flipped or inverted learning model has been around for a while. In the past, flipping has been an interesting, but impractical, instructional strategy. However, in the past five years, the tools necessary for flipping instruction have been plentiful, accessible, and easy to implement through Web-based sharing services such as YouTube, Vimeo, and SoundCloud. Consequently, we can now ask the more substantive question: Is flipping really a more effective instructional approach, or is it simply a mechanism for faculty to do less in the classroom? This book provides an array of research to demonstrate that the flipped classroom is both an important and a sustainable instructional innovation.

INSTRUCTIONAL INNOVATION

I would suggest instructional innovation comes about due to three factors: (a) focusing on the hard stuff; (b) time shifting; and (c) increasing student engagement. In every discipline, there is material that is relatively easy to learn and other stuff that is really confusing and very challenging for students. When we reflect on innovations, they focus on how to make learning the hard stuff more efficient, more effective, or sometimes both. We also tend to think about learning going on in a physical classroom, on a specific day and time. However, in time shifting we think more holistically. We look at the process of learning with fresh eyes and then redistribute the learning process in terms of what happens inside the classroom versus outside the classroom. Finally, there is the continuing issue of inert knowledge resulting from students being passive learners who subsequently cannot apply the material or use it to problem solve or innovate. Put differently, there has long been a need to increase student engagement in the learning process. There are a few ways to do this including using more active learning instructional techniques, or giving students greater responsibility for their learning. In the past, instructional innovations have been limited for practical reasons. Today, we have easy-to-use, yet powerful, technology tools that allow us to re-think instructional innovation with new abilities to create powerful learning experiences. In particular, the flipped learning model seems particularly promising as it employs all three innovation factors.

WHY FLIPPING IS INNOVATIVE

In many classrooms, students listen to lectures. There is some short discussion, maybe a short group activity. Then, outside the classroom, students attempt problem solving exercises or other challenging applications of the basic information learned in the class. Flipped classrooms structure learning in a
radically different way. Simply put, students prepare for an upcoming lesson outside of class and then engage in learning challenges inside the class. Many flipped classrooms address preparation through a series of short videos that students watch before coming to class, but there are other approaches as well. The bottom line is the elimination of the traditional lecture. Instead, most of the class time is focused on activities or discussions about the most difficult material being learned. Thus, flipped classrooms incorporate all three key characteristics of instructional innovation. There is a greater focus on the hard stuff in the live classroom, there is time-shifting regarding what happens inside/outside the classroom, and instructors develop discussions and activities in the classroom that increase student engagement with learning.

WHY FACULTY ARE INTERESTED

Relatively few faculty are interested in technology per se. They have other priorities and other interests. Getting sizable numbers of faculty to participate in technology seminars including brown bag sessions is usually difficult. Simply put, they do not have the time to learn about new gadgets. However, discussions about flipped classrooms seem to attract many more faculty than the traditional tech talk. Why is this?

As I have listened to several faculty discuss this issue, the main attraction is their own frustration with not being able to work deeply enough with students on the hard stuff in their classrooms. In other words, the attraction of flipping for faculty is almost solely due to the perceived pedagogical benefits that flipping offers. Many faculty easily relate and resonate with that benefit. As a consequence, they are willing to learn the technology skills needed due to the richness of the potential pedagogical benefits.

DOING SOMETHING WELL

As we all know, there is a vast difference between doing something and doing something well. My guess is it will take us a few years to collectively understand what seem to be the best tools and best instructional strategies to use in flipped teaching. The general needs can be easily stated, but the devil is in the details. At this point, we do not have a collective shared history of details yet, and that, in essence, is why this book is so timely and important – this book provides important stories about how educators have implemented flipped teaching. It is hard to do anything well, and flipped environments are still in the early stages. Yet we have every reason to believe both our theoretical thinking and our practical implementation will improve a lot over the next decade. The focus in this book is on promoting active learning. What are the best ways to engage students in the flipped environment? What are the biggest barriers to students adequately preparing for upcoming classes? How have excellent faculty navigated this new terrain? Promoting Active Learning through the Flipped Classroom Model provides 15 rich and diverse case studies. In turn, this exciting volume should help faculty wanting to dig beneath the surface to create an excellent flipped learning environment for their own students.

Mathew Mitchell
University of San Francisco, USA
Mathew Mitchell is a Full Professor in the Learning and Instruction Department, School of Education at the University of San Francisco, USA. Dr. Mitchell is also Co-Director for the Center for Teaching Excellence at USF. He teaches courses in multimedia learning, cognitive psychology, motivation, creativity, and statistics for doctoral students. His research interests include student motivation to learn, mathematics education, and multimedia learning. His research has resulted in many publications in refereed journals and conference proceedings. Dr. Mitchell’s current research focuses on pecha kucha presentations for enhancing learning and using multimedia to teach key meta skills (such as how to read a research article). He has also delved into the realm of games with his book Mastermind Mathematics: Logic, Strategies, and Proofs (1999).