Table of Contents

Preface.. xxii

Volume I

Section 1
Fundamental Concepts and Theories

This section begins with several introductory chapters on Nanotechnology and its associated areas of research. Nanotechnology is one of the fastest growing fields in engineering and materials science, making it an important area of study for a variety of disciplines. Primarily, this section will introduce topics ranging from biotechnology and chemistry to renewable energies and synthetic materials. In the opening 13 chapters of this extensive reference source, readers will obtain a clear understanding of the fundamental concepts and theories integral to the field of Nanotechnology.

Chapter 1
Nanosciences and Nanotechnologies: Evolution Trajectories and Disruptive Features 1

Ugo Finardi, Università degli studi di Torino, Italy & National Research Council of Italy, Italy

Chapter 2
A Networking Paradigm Inspired by Cell Communication Mechanisms .. 21

Tadashi Nakano, Osaka University, Japan

Chapter 3
Bionanotechnology .. 31

David E. Reisner, The Nano Group, Inc., USA
Samuel Brauer, Nanotech Plus, LLC, USA
Wenwei Zheng, University of California, Berkeley, USA
Chris Vulpe, University of California, Berkeley, USA
Raj Bawa, Rensselaer Polytechnic Institute, USA & Bawa Biotech, LLC, USA
Jose Alvelo, Vector Consulting Group, LLC, USA
Mariekie Gericke, Mintek, South Africa
Chapter 4
Electrostatic Potential at Nuclei: An Accurate Reactivity Descriptor for Organic Compounds....... 87

Sonia Ilieva, University of Sofia, Bulgaria
Boris Galabov, University of Sofia, Bulgaria

Chapter 5
Nanoroots of Quantum Chemistry: Atomic Radii, Periodic Behavior, and Bondons....................... 123

Mihai V. Putz, West University of Timisoara, Romania

Chapter 6
Parallel Quantum Chemistry at the Crossroads .. 163

Hubertus J. J. van Dam, Pacific Northwest National Laboratory, USA

Chapter 7
Exploring Structural and Dynamical Properties Microtubules by Means of Artificial Neural Networks .. 191

R. Pizzi, Università degli Studi di Milano, Italy
S. Fiorentini, Università degli Studi di Milano, Italy
G. Strini, Università degli Studi di Milano, Italy
M. Pregnolato, Università degli Studi di Pavia, Italy

Chapter 8
Synthesis and Characterization of Hexagonal Shaped Nanocrystalline Zinc Oxide Powders 204

M. Ahmad, B. Z. University, Multan, Pakistan
E. Ahmed, B. Z. University, Multan, Pakistan
N. R. Khalid, B. Z. University, Multan, Pakistan
M. J. Jackson, Bonded Abrasive Consultancy Group, USA
W. Ahmed, University of Central Lancashire, UK

Chapter 9
Synthesis, Properties, and Applications of Special Substrates Coated by Titanium Dioxide Nanostructured Thin Films via Sol-Gel Process ... 218

Hamid Dadvar, University of Guilan, Iran
Farhad E. Ghodsi, University of Guilan, Iran
Saeed Dadvar, Isfahan University of Technology, Iran

Chapter 10
FPGA-Based Object Detection and Motion Tracking in Micro- and Nanorobotics 251

Claas Diederichs, University of Oldenburg, Germany
Sergej Fatikow, University of Oldenburg, Germany
Chapter 11
Cluster Origin of Solvent Features of Fullerenes, Single-Wall Carbon Nanotubes, Nanocones, and Nanohorns ... 262
Francisco Torrens, Institut Universitari de Ciència Molecular, Universitat de València, Spain
Gloria Castellano, Catedra Energies de Tecnologia Interdisciplinar, Universidad Católica de Valencia, Spain

Chapter 12
Nanotechnology for Photovoltaic Energy: Challenges and Potentials ... 319
Salahuddin Qazi, State University of New York Institute of Technology, USA
Farhan A. Qazi, Syracuse University, USA

Chapter 13
Nanoparticle Scattering, Absorption, and Interface Effects for Surface Plasmon Enhanced Thin Silicon Solar Cells: Theory, Past Findings, and Future Directions .. 347
Nirag Kadakia, State University of New York at Albany, USA

Section 2
Tools and Technologies
This section discusses some of the many diverse uses of Nanotechnology in the modern world. The most common applications of Nanotechnology are in the fields of materials science, robotics, and electronics, areas that make use of an array of specialized tools and techniques to accomplish complex tasks. In particular, Nanotechnology is used to enhance solar energy collectors, high-performance computers, medical sensors, and other critical devices. With 15 chapters, this section offers a broad treatment of some of the many tools and technologies within Nanotechnology.

Chapter 14
Quantum Well Solar Cells: Physics, Materials and Technology .. 369
Magdalena Lidia Ciurea, National Institute of Materials Physics, Romania
Ana-Maria Lepadatu, National Institute of Materials Physics, Romania
Ionel Stavarache, National Institute of Materials Physics, Romania

Chapter 15
Nanotechnology and Polymer Solar Cells ... 384
Gavin Buxton, Robert Morris University, USA

Chapter 16
Quantum Dot Solar Cells .. 406
Yoshitaka Okada, The University of Tokyo, Japan
Katsuhiisa Yoshida, The University of Tokyo, Japan
Yasushi Shoji, University of Tsukuba, Japan
Volume II

Chapter 22
Micro Information Systems: New Fractals in an Evolving IS Landscape ... 533
 Rasmus Ulslev Pedersen, Copenhagen Business School, Denmark
 Mogens Kühn Pedersen, Copenhagen Business School, Denmark

Chapter 23
Static Telecytological Applications for Proficiency Testing ... 556
 Stavros Archondakis, Army Hospital, Greece

Chapter 24
Materials Design of Sensing Layers for Detection of Volatile Analytes ... 569
 Mutsumi Kimura, Shinshu University, Japan
 Tadashi Fukawa, Shinshu University, Japan
 Tsuyoshi Ikehara, National Institute of Advanced Industrial Science and Technology, Japan
 Takashi Mihara, Olympus Corporation, Japan

Chapter 25
Design of Implantable Antennas for Medical Telemetry: Dependence upon Operation Frequency, Tissue Anatomy, and Implantation Site .. 585
 Asimina Kiourti, School of Electrical and Computer Engineering-National Technical University of Athens, Greece
 Konstantina S. Nikita, School of Electrical and Computer Engineering-National Technical University of Athens, Greece

Chapter 26
Graphene-Based Sensors for Monitoring Strain: A First-Principles Density Functional Theory Analysis .. 602
 M. Mirnezhad, University of Guilan, Iran
 R. Ansari, University of Guilan, Iran
 H. Rouhi, University of Guilan, Iran
 M. Faghihnasiri, University of Guilan, Iran

Chapter 27
On the Forces between Micro and Nano Objects and a Gripper ... 612
 Galin Valchev, Institute of Mechanics, Bulgarian Academy of Sciences, Bulgaria
 Daniel Dantchev, Institute of Mechanics, Bulgarian Academy of Sciences, Bulgaria
 Kostadin Kostadinov, Institute of Mechanics, Bulgarian Academy of Sciences, Bulgaria
Chapter 28
Neurosurgical Operations Using Navigation Microscope Integration System ... 629
Takashi Tamiya, Kagawa University, Japan
Masahiko Kawanishi, Kagawa University, Japan
Keisuke Miyake, Kagawa University, Japan
Nobuyuki Kawai, Kagawa University, Japan
Shuxiang Guo, Kagawa University, Japan

Section 3
Development and Design Methodologies
This section bridges the gap between the fundamentals of Nanotechnology and its application in a variety of environments and situations. Understanding how nanomaterials and nanomachines work is imperative to their successful utilization in the engineering and medical fields. In addition, Nanotechnology plays a critical role in nanomanipulation, solar energy systems, and quantum computing, among other areas. The 11 chapters that make up this section explore the development and design methodologies that bridge the gap between fundamental concepts and real-world applications in Nanotechnology.

Chapter 29
Robust Integral of NN and Error Sign Control for Nanomanipulation Using AFM 641
Qinmin Yang, Zhejiang University, China
Jiangang Lu, Zhejiang University, China

Chapter 30
Probing the Reactive Center for Site Selective Protonation in a Molecule by the Local Density Functional Descriptors .. 653
Sandip Kumar Rajak, University of Kalyani, India
Nazmul Islam, University of Kalyani, India
Dulal C. Ghosh, University of Kalyani, India

Chapter 31
Carbon Vacancy Ordered Non-Stoichiometric ZrC\textsubscript{0.6}: Synthesis, Characterization and Oxidation at Low Temperature ... 667
Wentao Hu, Yanshan University, China
Yongjun Tian, Yanshan University, China
Zhongyuan Liu, Yanshan University, China

Chapter 32
Three Models for Ethical Governance of Nanotechnology and Position of EGAIS’ Ideas within the Field .. 690
Fernand Doridot, Center for Ethics, Technology and Society, ICAM Lille, France
Chapter 33
Computer Simulations of Solar Energy Systems ... 712
Akram Gasmelseed, Universiti Teknologi Malaysia, Malaysia

Chapter 34
Quantum Confinement Modeling and Simulation for Quantum Well Solar Cells 731
Laurentiu Fara, Polytechnic University of Bucharest, Romania & Academy of Romanian Scientists, Romania
Mihai Razvan Mitroi, Polytechnic University of Bucharest, Romania

Chapter 35
The Biotic Logic of Quantum Processes and Quantum Computation 742
Hector Sabelli, Chicago Center for Creative Development, USA
Louis H. Kauffman, University of Illinois at Chicago, USA

Chapter 36
Modeling of Quantum Key Distribution System for Secure Information Transfer 811
K. E. Rumyantsev, Taganrog Institute of Technology, Russia
D. M. Golubchikov, Southern Federal University, Russia

Chapter 37
On Extended Topochemical Atom (ETA) Indices for QSPR Studies 841
Kunal Roy, Jadavpur University, India
Rudra Narayan Das, Jadavpur University, India

Chapter 38
An All-Inversion-Region gm/ID Based Design Methodology for Radiofrequency Blocks in CMOS Nanometer Technologies .. 874
Rafaela Fiorelli, University of Seville, Spain & Instituto de Microelectrónica de Sevilla, Spain
Eduardo Peralías, Instituto de Microelectrónica de Sevilla, Spain
Fernando Silveira, Universidad de la República, Uruguay

Chapter 39
S. Ikezawa, Waseda University, Graduate School of Information, Production and Systems, Japan
T. Ueda, Waseda University, Graduate School of Information, Production and Systems, Japan
This section continues with an in-depth look at some practical applications in the field of Nanotechnology. Because Nanotechnology has grown into an ubiquitous aspect of many important scientific fields, its applications can be found in almost any professional or research endeavor. The topics in this section are diverse, including, notably, nanomaterials, nanorobotics, biomedicine, nanoart, and particle synthesis. The 14 chapters in this section provide an in-depth examination of the utilization and application of the fundamental principles of Nanotechnology.

Chapter 40
Using Quantum Agent-Based Simulation to Model Social Networks: An Innovative Interdisciplinary Approach

C. Bisconti, University of Salento, Italy
A. Corallo, University of Salento, Italy
M. De Maggio, University of Salento, Italy
F. Grippa, University of Salento, Italy
S. Totaro, University of Salento, Italy

Chapter 41
Nanorobot-Based Handling and Transfer of Individual Silicon Nanowires

Malte Bartenwerfer, University of Oldenburg, Germany
Sergej Fatikow, University of Oldenburg, Germany

Chapter 42
Advances in Robot Surgery

Silvia Frumento, ASML, The Netherlands
Roberto P. Razzoli, University of Genova, Italy
Francesco E. Cepolina, University of Genova, Italy

Chapter 43
On the Modeling of Carbon Nanotubes as Drug Delivery Nanocapsules

F. Alisafaee, University of Wyoming, USA
R. Ansari, University of Guilan, Iran

Chapter 44
Designing Biomedical Stents for Vascular Therapy: Current Perspectives and Future Promises

Arghya Paul, McGill University, Canada

Chapter 45
Pharmacokinetic Challenges against Brain Diseases with PET

Hiroshi Watabe, Graduate School of Medicine, Osaka University, Japan
Keisuke Matsubara, Akita Research Institute of Brain and Blood Vessels, Japan
Yoko Ikoma, Karolinska Institute, Sweden
Chapter 46
NanoArt: Nanotechnology and Art ... 1008
Cris Orfescu, NanoArt21, USA

Chapter 47
Nanocomputing in Cognitive Radio Networks to Improve the Performance 1020
Yenumula B Reddy, Grambling State University, USA

Chapter 48
Generating Supply Chain Ordering Policies using Quantum Inspired Genetic Algorithms and Grammatical Evolution .. 1041
Seán McGarraghy, University College Dublin, Ireland
Michael Phelan, University College Dublin, Ireland

Volume III

Chapter 49
Nanoparticles: Towards Predicting Their Toxicity and Physico-Chemical Properties 1071
Bakhtiyor Rasulev, Jackson State University, USA
Danuta Leszczynska, Jackson State University, USA
Jerzy Leszczynski, Jackson State University, USA

Chapter 50
Biological Synthesis of Silver Nanoparticles and their Functional Properties 1090
Veluchamy Prabhawathi, Indian Institute of Technology Madras, India
Ponnurengam Malliappan Sivakumar, Indian Institute of Technology Madras, India
Mukesh Doble, Indian Institute of Technology Madras, India

Chapter 51
Polymer-Derived Ceramics (PDCs): Materials Design towards Applications at Ultrahigh-Temperatures and in Extreme Environments ... 1108
Emanuel Ionescu, Technische Universität Darmstadt, Institut für Materialwissenschaft, Germany
Gabriela Mera, Technische Universität Darmstadt, Institut für Materialwissenschaft, Germany
Ralf Riedel, Technische Universität Darmstadt, Institut für Materialwissenschaft, Germany

Chapter 52
Effects of Different Parameters on Delamination Factor of Glass Fiber Reinforced Plastic (GFRP) ... 1140
Vikas Sharma, Haryana Institute of Engineering and Technology, Bahdurgarh, India
Vinod Kumar, Thapar University, India
Harmesh Kumar, UIET, Panjab University, Chandigarh, India
Section 5
Critical Issues

This section examines Nanotechnology applications to evaluate their effectiveness and explore methodologies and best practices for their implementation in real-world scenarios. With so many fields making use of Nanotechnologies in so many different ways, it can often be a challenge to determine the best application or method for every situation. That is why this section explores some of the more common Nanotechnology applications, including renewable energy collection, particle science, medical and surgical technologies, and robotics. In this section, 10 chapters explore some of the critical issues driving advances in Nanotechnology.

Chapter 53
Phononic Engineering for Hot Carrier Solar Cells ... 1152
Sana Laribi, Institute of Research and Development on Photovoltaic Energy, France
Arthur Le Bris, Institute of Research and Development on Photovoltaic Energy, France
Lun Mei Huang, Institute of Research and Development on Photovoltaic Energy, France
Par Olsson, Institute of Research and Development on Photovoltaic Energy, France
Jean Francois Guillemoles, Institute of Research and Development on Photovoltaic Energy, France

Chapter 54
Materials Characterization Techniques for Solar Cell Devices: Imaging, Compositional and Structural Analysis ... 1181
Michael S. Hatistergos, International Business Machines, USA & University at Albany, State University of New York, USA

Chapter 55
Analytical Models of Bulk and Quantum Well Solar Cells and Relevance of the Radiative Limit .. 1195
James P. Connolly, Universidad Politécnica de Valencia, Spain

Chapter 56
Nanostructured Metal Oxide Gas Sensor: Response Mechanism and Modeling 1213
Jamal Mazloom, University of Guilan, Iran
Farhad E. Ghodsi, University of Guilan, Iran

Chapter 57
Quantum Backpropagation Neural Network Approach for Modeling of Phenol Adsorption from Aqueous Solution by Orange Peel Ash ... 1254
Siddhartha Bhattacharjee, Tata Consultancy Services, India
Siddhartha Bhattacharya, RCC Institute of Information Technology, India
Naba Kumar Mondal, The University of Burdwan, India

Chapter 58
Studies on Gymnemic Acids Nanoparticulate Formulations against Diabetes Mellitus 1276
R. Ravichandran, Regional Institute of Education, NCERT, Mysore, Karnataka, India
Chapter 59
Antimycotic Activity of Nanoparticles of MgO, FeO and ZnO on some Pathogenic Fungi 1289
 A. H. Wani, University of Kashmir, Kashmir
 M. Amin, Sathyabama University, India
 M. Shahnaz, Sathyabama University, India
 M. A. Shah, National Institute of Technology, Srinagar, India

Chapter 60
Strategy and Policy Issues Related to Nanotechnology Innovations in Medical Education 1300
 Tamar Chachibaia, Georgian National Nano-Innovation Initiative, Georgia Republic

Chapter 61
An Epistemological Analysis of QSPR/QSAR Models .. 1326
 Jordi Vallverdú, Universitat Autònoma de Barcelona, Spain

Chapter 62
The Earth Sciences and Creative Practice: Exploring Boundaries between Digital and Material Culture.. 1342
 Suzette Worden, Curtin University, Australia

Chapter 63
Selective Pick-and-Place of Thin Film by Robotic Micromanipulation 1362
 Bruno Sauvet, Université Pierre et Marie Curie, France
 Mohamed Boukhicha, Université Pierre et Marie Curie, France
 Adrian Balan, Université Pierre et Marie Curie, France
 Gilgueng Hwang, Laboratoire de Photonique et de Nanostructures, CNRS, France
 Dario Taverna, Université Pierre et Marie Curie, France
 Abhay Shukla, Université Pierre et Marie Curie, France
 Stéphane Régnier, Université Pierre et Marie Curie, France

Section 6
Emerging Trends

This section concludes this multi-volume reference with some of the latest advances in the field of Nanotechnology. Even though Nanotechnology is a relatively young discipline, it continues to expand quickly, challenging researchers to stay abreast of the latest developments and trends. This section discusses some of those trends, including microcomputing, medical diagnostics, biological modeling, quantum cryptology, and supercomputing. The final 13 chapters of this extensive three-volume reference conclude with a detailed look at emerging trends in the field of Nanotechnology.

Chapter 64
Built-In Self Repair for Logic Structures .. 1376
 Tobias Koal, Brandenburg University of Technology Cottbus, Germany
 Heinrich T. Vierhaus, Brandenburg University of Technology Cottbus, Germany
Chapter 65
Fabrication of Nanoelectrodes by Cutting Carbon Nanotubes Assembled by Di-Electrophoresis Based on Atomic Force Microscope

Zengxu Zhao, Shenyang Institute of Automation, Chinese Academy of Sciences, China
Xiaojun Tian, Shenyang Institute of Automation, Chinese Academy of Sciences, China
Zaili Dong, Shenyang Institute of Automation, Chinese Academy of Sciences, China
Ke Xu, Shenyang Jianzhu University, China

Chapter 66
Logistic vs. W-Lambert Information in Modeling Enzyme Kinetics at Quantum Level

Mihai V. Putz, West University of Timişoara, Romania
Ana-Maria Putz, Timişoara Institute of Chemistry of Romanian Academy, Romania

Chapter 67
Dipole Moment as a Possible Diagnostic Descriptor of the Conformational Isomerism of the Ammonia Molecule

Dulal C. Ghosh, University of Kalyani, India
Sandip Kumar Rajak, University of Kalyani, India

Chapter 68
Application of Electrophoretic Deposition for Interfacial Control of High-Performance SiC Fiber-Reinforced SiC Matrix (SiCf/SiC) Composites

Katsumi Yoshida, Tokyo Institute of Technology, Japan

Chapter 69
A Knowledge-Based Approach for Microwire Casting Plant Control

S. Zaporojan, Technical University of Moldova, Republic of Moldova
C. Plotnic, Technical University of Moldova, Republic of Moldova
I. Calmicov, Technical University of Moldova, Republic of Moldova
V. Larin, Microfir Tehnologii Industriale Ltd, Republic of Moldova

Chapter 70
Preparation of a Uranium Conversion Plant’s Nuclear Waste for Final Disposal by Means of Magnetically Assisted Chemical Separation

Ahad Ghaemi, Iran University of Science and Technology-School of Chemical Engineering, Iran
Mehdi Maghsudi, Iran University of Science and Technology, Iran
Fatemeh Hanifpour, Sharif University of Technology, Iran
Mohammad Samadfam, Sharif University of Technology, Iran

Chapter 71
Nanorevolution and Professionalizing University Education: Opportunities and Obstacles

Mahendra Rai, SGB Amravati University, India
Shivaji Deshmukh, SGB Amravati University, India
Chapter 72

CulnGaSe Based Thin Films for Photovoltaic Solar Cells ... 1510

Harry Efstathiadis, University at Albany, State University of New York, USA
Adam Filios, Farmingdale State College, State University of New York, USA

Chapter 73

Hybrid Solar Cells: Materials and Technology.. 1528

Corneliu Cincu, Polytechnic University of Bucharest, Romania
Aurel Diacon, Polytechnic University of Bucharest, Romania

Chapter 74

Solar Energy Storage: An Approach for Terrestrial and Space Applications................................. 1550

Ahmed Elgafy, University of Cincinnati, USA

Chapter 75

Einstein-Podolsky-Rosen Paradox and Certain Aspects of Quantum Cryptology with Some
Applications ... 1579

Narayanankutty Karuppath, Amrita Vishwa Vidyapeetham, India
P. Achuthan, Amrita Vishwa Vidyapeetham, India

Chapter 76

An Advanced Architecture of a Massive Parallel Processing Nano Brain Operating 100 Billion
Molecular Neurons Simultaneously ... 1588

Anirban Bandyopadhyay, National Institute for Materials Science, Japan
Subrata Ghosh, National Institute for Materials Science, Japan
Daisuke Fujita, National Institute for Materials Science, Japan
Ranjit Pati, Michigan Technological University, USA
Satyajit Sahu, National Institute for Materials Science, Japan

Index.. xv