Appendix

LIST OF SYMBOLS

a wave number
b specific heat
\(c_v \) specific heat at constant volume
C speed of light
d thickness of the horizontal layer
\(D_B \) Brownian diffusion coefficient
\(D_T \) thermophoretic diffusion coefficient
Da Darcy number
\(D_{T_C} \) diffusivity of Dufour type
\(D_{C_T} \) diffusivity of Soret type
e charge of electron
F stress relaxation parameter
\(g \) acceleration due to gravity
H magnetic field
\(H_s \) constant of heat source strength
\(j_p \) mass flux
\(k_{I_m} \) medium permeability
\(k_m \) thermal conductivity of porous medium
k_B Boltzmann constant
k_x, wave numbers in x- direction
k_y wave numbers in y- direction
Le Lewis number
Ls thermosolutal Lewis number
M Hall effect parameter
n growth rate of disturbances
N electron number density
\(N_A \) modified diffusivity ratio
\(N_B \) modified particle -density increment
\(N_{C_T} \) Soret parameter
Greek Symbols

\(\alpha\) thermal expansion coefficient
\(\alpha_C\) analogous to solute concentration
\(\mu\) viscosity
\(\tilde{\mu}\) effective viscosity
\(\mu'\) kinematic visco-elasticity
\(\mu_e\) magnetic permeability
\(\lambda\) relaxation time
\(\varepsilon\) porosity
\(\Omega\) angular velocity
\(\rho\) density of the fluid
\(\rho_f\) density of base fluid
\(\rho_c\) heat capacity of nanofluid
\((\rho c)_m\) heat capacity of nanofluid in porous medium
\((\rho c)_p\) heat capacity of nanoparticles
\(\phi\) volume fraction of the nanoparticles
\(\phi_0\) volume fraction of the nanoparticles at reference scale
\(\rho_p \)

density of nanoparticles

\(\varsigma = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \)

\(z \)-components of vorticity

\(\xi = \frac{\partial h_y}{\partial x} - \frac{\partial h_x}{\partial y} \)

thermal diffusivity

\(\kappa' \)

solutal diffusivity

\(\sigma \)

thermal capacity ratio

\(\omega \)

dimensionless frequency of oscillation

\(\varsigma \)

\(z \)-components of current density

\(\eta \)

thermal anisotropy parameter

\(\delta h(z) \)

variable gravity parameter

Superscripts

'

non-dimensional variables

''

perturbed quantity

Subscripts

\(p \)

particle

\(f \)

fluid

\(b \)

basic state

\(0 \)

lower boundary

\(1 \)

upper boundary

\(s \)

stationary

\(osc \)

oscillatory

\(c \)

critical

\(H \)

horizontal plane

\(D \equiv \frac{d}{dz} \).