Index

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D x-ray analysis</td>
<td>80</td>
</tr>
<tr>
<td>3D anatomical models</td>
<td>319</td>
</tr>
<tr>
<td>3D cephalometric analysis, software for</td>
<td>23</td>
</tr>
<tr>
<td>3D cephalometrics</td>
<td>7</td>
</tr>
<tr>
<td>3D-image data</td>
<td>79</td>
</tr>
<tr>
<td>3-D printing (3-DP)</td>
<td>290</td>
</tr>
<tr>
<td>3D reconstruction</td>
<td>149</td>
</tr>
<tr>
<td>3D reconstructions</td>
<td>156</td>
</tr>
<tr>
<td>3D reconstruction techniques</td>
<td>108</td>
</tr>
<tr>
<td>3D scaffold</td>
<td>125</td>
</tr>
<tr>
<td>3D scaffold, for TE</td>
<td>124</td>
</tr>
<tr>
<td>3D teeth reconstruction</td>
<td>321</td>
</tr>
<tr>
<td>3D visualization</td>
<td>28</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>abutment properties</td>
<td>177</td>
</tr>
<tr>
<td>active navigation, system design for</td>
<td>166</td>
</tr>
<tr>
<td>adult bone-marrow-derived cells</td>
<td>131</td>
</tr>
<tr>
<td>adverse drug events (ADE)</td>
<td>196</td>
</tr>
<tr>
<td>Agency for Healthcare Research and Quality (AHRQ)</td>
<td>196</td>
</tr>
<tr>
<td>algebraic reconstruction algorithms</td>
<td>113</td>
</tr>
<tr>
<td>algebraic reconstruction techniques (ART)</td>
<td>112</td>
</tr>
<tr>
<td>alignment</td>
<td>322</td>
</tr>
<tr>
<td>alkaline phosphatase (ALP)</td>
<td>254</td>
</tr>
<tr>
<td>alternative cell sources</td>
<td>131</td>
</tr>
<tr>
<td>Amalgam</td>
<td>252</td>
</tr>
<tr>
<td>American Dental Association (ADA)</td>
<td>204, 313</td>
</tr>
<tr>
<td>anatomical and physical modeling, in reconstructive and regenerative medicine</td>
<td>277</td>
</tr>
<tr>
<td>anatomical and physical modeling, in treatment planning</td>
<td>276</td>
</tr>
<tr>
<td>application programming interface (API)</td>
<td>221</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacterial colonies, counting</td>
<td>136</td>
</tr>
<tr>
<td>bacterial colony counter</td>
<td>134</td>
</tr>
<tr>
<td>bacterial colony enumeration</td>
<td>134</td>
</tr>
<tr>
<td>bacterial colony enumeration system</td>
<td>137</td>
</tr>
<tr>
<td>beam hardening</td>
<td>8</td>
</tr>
<tr>
<td>bicortical anchorage</td>
<td>183</td>
</tr>
<tr>
<td>bioceramics</td>
<td>258</td>
</tr>
<tr>
<td>biocomposites, data collection and selection</td>
<td>259</td>
</tr>
<tr>
<td>biomaterials, economic potential</td>
<td>247</td>
</tr>
<tr>
<td>biomaterials, first generation</td>
<td>243</td>
</tr>
<tr>
<td>biomimetic biomaterials</td>
<td>264</td>
</tr>
<tr>
<td>biomimetic nano-scaffolds</td>
<td>265</td>
</tr>
<tr>
<td>biopolymers, data collection and selection</td>
<td>260</td>
</tr>
<tr>
<td>bone clipping</td>
<td>163</td>
</tr>
<tr>
<td>bone morphogenetic proteins (BMPs)</td>
<td>263</td>
</tr>
<tr>
<td>bone properties</td>
<td>175</td>
</tr>
<tr>
<td>bone-to-implant contact</td>
<td>183</td>
</tr>
<tr>
<td>bone-to-implant interface</td>
<td>181</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD-CAM technology</td>
<td>153</td>
</tr>
<tr>
<td>CANDIDE–3 3D face model</td>
<td>327</td>
</tr>
<tr>
<td>cementum-derived growth factor (CGF)</td>
<td>263</td>
</tr>
<tr>
<td>centric occlusion</td>
<td>161</td>
</tr>
</tbody>
</table>
Index

cereals, data collection and selection 256
CFU, colony forming unit 135
character code set 306
chemical vapour deposition process (CVD) 255
CLAHE, contrast-limited adaptive histogram equalization 137
Classical ART-Algorithm 113
clinical data, medical information and population data, access to 194
clinical data repository (CDR) 192
clinical quality assurance, and education improvement 195
clonogenic assay 134
Cochrane Library 236
colony enumeration 140
colony forming assay 134
colony forming unit (CFU) 135
colony recognition 138, 140
colony separation 139, 142
computed tomography (CT) 1, 2, 4, 108, 274, 276, 284
computer-aided design (CAD) 126
computer-aided system for tissue scaffolds (CASTS) 275
Computer Aided System for Tissue Scaffolds (CASTS) 127
computer-aided tissue engineering (CATE) 274
computer-based patient record system (CPRS) 192
computerized medical record (CMR) 192
computer tomography (CT) 29, 127, 159, 324
cone-beam computed tomography (CBCT) 2, 4, 108
cone-beam computed tomography, in orthodontics 5
cone beam computer tomography (CBCT) 108, 160
cone beam tomography (CBT) 29
content management system (CMS) 241
contour following 322
contour matching-triangulation 323
contrast-limited adaptive histogram equalization (CLAHE) 137
cupping artifacts 8
data and image processing 286
data charting 199
data classification, methodology for 241
data entry issues 201
data, from a CT examination 5
data, related barriers 199
dental applications 281
dental applications, gadgets for 256
dental biomaterials, classes of 251
dental biomaterials digital library 241
dental biomaterials digital library 269
dental biomaterials, diversity and complexity 243
dental device materials, biological response to 267
dental devices and biomaterials, safety of 267
dental image analysis, clinical application 87
dental implantology 159
dental prostheses, risk associated with metals in 268
Dentascan 148
dentition planning 161
DentSim™ system 320
Deutsche Gesellschaft für Zahn-, Mund- und Kieferheilkunde (DGZMK) 66
diamond-like carbon (DLC) 259
DICOM 28, 81
DICOM CT images 29
DICOM, Digital Imaging and Communications in Medicine 149
DICOM file format 31
Digital Imaging and Communications in Medicine (DICOM) 149
digital libraries 240
digital library architecture, defining 241
digital library, databases, search Engines and software modules, implementation of 241
digital library developments, socio-cultural importance of 243
digital library for dental biomaterials 233
digital research area, state of the art of the 235
digital volume tomography (DVT) 159
digitizing points and curves 19
Index

direct iso-surface rendering 12
direct volume rendering 12
DIR® system 71, 75
DIR® System 65
DIR® system, functionality of 73
dish/plate region detection 137, 140
double-byte characters 306
DPE (Digital Preservation Europe) 235
drill axis calculation 165
DVT, digital volume tomography 159

E
electronic health record (EHR) 192
electronic health records (EHRs) 192
electronic medical record (EMR) 192
electronic oral health records (EOHRs) 191
electronic patient record (EPR) 192
electronic records, transforming from paper records to 203
emulsification 125
EOHR, benefits 194
EOHR, establishing 203
EOHR, impact on workflow 203
EOHR input, in research data 211
EOHR, problems, pitfalls, and barriers 198
EOHRS, adoption of in clinical settings 196
EOHRS, in dental public health 209
EOHRS, in practice based research 209
EOHRS, in research and public health 209
EOHRS, status of 193
EOHR, systems in the market 205
EOHR, what is 192
error calculation 36
Escherichia Coli 138, 140
Expectation Maximization algorithm 91
extracellular matrix (ECM) 131, 262
extrusion technology-based systems 290

F
face and oral cavity, anatomic modeling of the 324
failed pixels 90
Fédération Dentaire Internationale (FDI) 308
Few-View Limited-Angle Inverse Problem 111
fibre meshes 126
finite element analysis (FEA) 170
finite element method (FEM) 170, 327
Flatguide™ 149
Flatguide™, function 150
Flatguide™, planning 150
Flatguide™ stent, and undergoing the CT 149
Flatguide™ Stent, creation of 149
Flatguide™ system 156
fluid dynamics 32
freeze-drying 125
fused deposition modeling (FDM) 126, 290

G
Gamma Correction (GC) 92
Gamma map 99
gas foaming 125
Gaussian model 93
GBR (guided bone regeneration) 246
General Haptic Open Software Toolkit (GHOST™) 221
geometric morphometric (GM) 1
geometric morphometrics (GM) 2
Glass Ionomer Cement (GIC) 258
gold-based alloys 252
Gothic arch 66
graphical modelling 160
graphical user interface (GUI) 222
GTR (guided tissue regeneration) 246
Guided Bone Regeneration (GBR) 262
guided surgery 147
Guided Tissue Regeneration (GTR) 262

H
hand piece calibration, three steps of 165
hand piece navigation control 164
haptic dental simulator 219
haptic devices 220
haptic model selection 223
haptic parameter panel, parameters controlled 225
haptics-based simulators, in dentistry 220
haptics control 225
Health Insurance Portability and Accountability Act (HIPAA) 202
heuristics, defining 241
histogram analysis 90
histogram, description 97
Histogram Equalization (HE) 92
Hooke’s Law 173
Hounsfield scale 32

I
image-based design techniques (IBD) 279
image data, in dentistry 80
image diagnostic in implantology, brief history of 148
image digitization 321
image-guided navigation systems, applied in dental implantology 159
image mosaicing 322
implant dentistry 282, 295
implant design 181
implant devices, coatings on 254
implant, length and diameter 180
implantology 147
implant placement configurations 183
implant properties 177
implant shape 180
impulsive noise 90
impulsive noise removal 100
impulsive noise, removal of 92
indirect rendering 15
Institute of Medicine’s (IOM) 195
insulin-like growth factors (IGF-I and II) 263
intellectual property rights (IPR) 243

J
Japan Industrial Standard (JIS) 305, 307

L
laser technology, systems based on 289
lateral pterygoid muscle 68
lifetime data repository (LDR) 192
liquid-liquid phase separation 126
Lisbon Agenda 236
local Gamma correction 99

M
magnetic resonance imaging (MRI) 127, 175, 274, 276, 284, 285
mandible alignment 65
Marquardt-Levenberg algorithm 32
masseter muscle 67
masticatory muscles 65
material properties 172
materials and methods, for dental notations 307
Materials for Medical Devices Database® 236, 237
maxillary distraction 39
Maxillary Distraction Osteogenesis, soft tissue changes following 39
maximum intensity projection (MIP) 15
measurement types 21
median filtering, switching 96
medium frequency (MF) 100
melt molding 125
mesh 17
Metadata Engine Project 242
metals, data collection and selection 251
METS Metadata Encoding and Transmission Standards 242
microCT 320
mineral nano-particles 266
minimizing medication errors 196
modelling techniques, in dental implantology 167
models fabrication procedure 284
MOD (mesio-occluso-distal) restoration 48
morse taper connection 178
multi-material laser-assisted densification (MMLD) 291, 294
Mutans Streptococci 138, 140

N
nanobiomaterials 266
nano-Features and nano-particles, in restorative dentistry 266
nano-fibre coatings 266
National Health Information Infrastructure (NHII) 193
NDIIPP (National Digital Information Infrastructure and Preservation Program) 235
noise, in CBCT 8
noise model, sensor and 93
non-invasive data acquisition 284
non-rigid registration 32
non-rigid registration, validation of 37
Index

O
OneScan 3D software 149, 156
oral and maxillofacial surgery 79
oral radiography, applications in 115
orofacial system, basic research of 66
orthodontics 282
Orthoralix 9200 DDE® 104
osseointegrated dental implants 170
osteocalcin (OC) 254
osteopromotive growth factors, on implant devices 263
Otsu’s method 139, 140
Otsu’s segmentation algorithm 137, 139, 140

P
paperless dental office, establishing 212
parallel port (EPP) 220
partial volume averaging effect (PVAE) 10
partial volume effect (PVE) 10
patient safety and quality of care, improvement in 195
periodontal ligament (PDL) 265
periodontal engineering, using biomimetic nano-scaffolds 265
PerioSim© 228
PerioSim©, reactions to using 229
personal health information (PHI) 202
Phantom haptic device 320
PHANToM™ Desktop 220
PHANToM™ haptic device 221
physical vapour deposition process (PVD) 255
Piezo ceramics 257
Piezoelectricity 257
platelet-derived growth factor (PDGF) 263
point spread function (PSF) 93
Poisson’s ratio 173, 174
polyglycolic acid (PGA) 124, 260
polyglycolic acid-poly L-lactic acid copolymer (PGA/PLLA) 127
poly(lactic acid) (PLA) 260
polylactic acid (PLA) 124
polylactic-co-glycolic acid (PLGA) 125
polymerization shrinkage, can it be modeled 59
polymerization shrinkage of restorative materials 45
polymer polyglycolic acid (PGA) 260
poly (methyl methacrylate) (PMMA) 277
polyvinylsiloxane (PVS) 128
practice based research networks (PBRNs) 209
principal component analysis 4
print technology, systems based on 290
Procrustes superimposition 1, 2
prostaglandin (PGE2) 254
prosthesic phase, Flatguide 154
prosthesis geometry 179
prosthesis materials 180
prosthetic reconstructions, mechanical behavior of 179
radiation exposure, and CT examinations 6
Radiographic Impulsive Noise filter (RaIN) 91
Rank Conditioned Filter (RCF) 91
rapid freeze prototyping (RFP) 291, 293
rapid prototyping 275
rapid prototyping, in dentistry 281
rapid prototyping methods, other 291
rapid prototyping systems, typical 289
rapid prototyping techniques 126
rapid prototyping technologies 273
Real Volume, coupled to the Flatguide 153
Real Volume, creation of the 152
region of interest (ROI) 284
residual stresses 46
resin-modified glass ionomers (RMGIs) 259
resorbable and non resorbable membranes, for GTR and GBR 262
restorative dentistry 281
rigid registration and visualization method, validation of the 36
ringing artifacts 8
scaffold, improvements 131
scaffolds 123
security issues, and health information protection 201
segmentation 28
segmentation phases (semi-automated segmentation) 288
selective laser sintering (SLS) 126, 290

382
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>self-assembled biomaterials</td>
<td>264</td>
</tr>
<tr>
<td>semi-automatic counters</td>
<td>136</td>
</tr>
<tr>
<td>Semilandmarks</td>
<td>4</td>
</tr>
<tr>
<td>shape deposition manufacturing (SDM)</td>
<td>291</td>
</tr>
<tr>
<td>Shape Memory Alloys</td>
<td>251</td>
</tr>
<tr>
<td>shape variables</td>
<td>4</td>
</tr>
<tr>
<td>shrinkage experiments, role of</td>
<td>57</td>
</tr>
<tr>
<td>shrinkage, relaxation</td>
<td>57</td>
</tr>
<tr>
<td>shrinkage research, role of finite element analysis in</td>
<td>60</td>
</tr>
<tr>
<td>shrinkage stress model</td>
<td>45, 46</td>
</tr>
<tr>
<td>shrinkage stress model, C-factor</td>
<td>48</td>
</tr>
<tr>
<td>shrinkage stress model, correlation with shrinkage</td>
<td>46</td>
</tr>
<tr>
<td>shrinkage stress model, effective shrinkage</td>
<td>55</td>
</tr>
<tr>
<td>shrinkage stress model, restoration size</td>
<td>51</td>
</tr>
<tr>
<td>shrinkage stress, what is</td>
<td>45</td>
</tr>
<tr>
<td>shrinkage value</td>
<td>52</td>
</tr>
<tr>
<td>silicate cement</td>
<td>258</td>
</tr>
<tr>
<td>simulator components</td>
<td>220</td>
</tr>
<tr>
<td>simulator functionality</td>
<td>223</td>
</tr>
<tr>
<td>simulator, supplementing with a training CD</td>
<td>228</td>
</tr>
<tr>
<td>Simultaneous Algebraic Reconstruction Technique (SART)</td>
<td>114</td>
</tr>
<tr>
<td>Simultaneous Iterative Reconstruction Technique (SIRT)</td>
<td>114</td>
</tr>
<tr>
<td>singular value decomposition (SVD)</td>
<td>164</td>
</tr>
<tr>
<td>smart biomaterials, data collection and selection</td>
<td>263</td>
</tr>
<tr>
<td>soft tissue filtering</td>
<td>96, 103</td>
</tr>
<tr>
<td>soft tissue filter (STF)</td>
<td>92</td>
</tr>
<tr>
<td>software used for medical investigations, validation of</td>
<td>85</td>
</tr>
<tr>
<td>solvent casting-particulate leaching</td>
<td>125</td>
</tr>
<tr>
<td>Standards Committee for Dental Informatics (SCDI)</td>
<td>204</td>
</tr>
<tr>
<td>standards development organizations (SDOs)</td>
<td>242</td>
</tr>
<tr>
<td>stem cells, embryonic</td>
<td>131</td>
</tr>
<tr>
<td>stem cells, neural</td>
<td>131</td>
</tr>
<tr>
<td>stereolithography file (STL)</td>
<td>288</td>
</tr>
<tr>
<td>Stereolithography (SLA)</td>
<td>289</td>
</tr>
<tr>
<td>sterilization methods</td>
<td>130</td>
</tr>
<tr>
<td>STL generator</td>
<td>150</td>
</tr>
<tr>
<td>streaking artifacts</td>
<td>8</td>
</tr>
<tr>
<td>sum of squared differences (SSD)</td>
<td>32</td>
</tr>
<tr>
<td>surgical guiding template, fabrication of</td>
<td>295</td>
</tr>
<tr>
<td>surgical phase, Flatguide</td>
<td>154</td>
</tr>
<tr>
<td>surgical splints</td>
<td>295</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>technical phase, Flatguide</td>
<td>153</td>
</tr>
<tr>
<td>technique, nine steps of</td>
<td>148</td>
</tr>
<tr>
<td>teeth morphology</td>
<td>320</td>
</tr>
<tr>
<td>teeth preparation</td>
<td>321</td>
</tr>
<tr>
<td>teeth, surface reconstruction of</td>
<td>321</td>
</tr>
<tr>
<td>teeth, volume reconstruction of</td>
<td>324</td>
</tr>
<tr>
<td>temporomandibular joint</td>
<td>68</td>
</tr>
<tr>
<td>therapeutic ceramics</td>
<td>258</td>
</tr>
<tr>
<td>three-dimensional (3D) imagery</td>
<td>108</td>
</tr>
<tr>
<td>three-dimensional bioplotting (3D bioplotting)</td>
<td>126</td>
</tr>
<tr>
<td>three-dimensional printing (3D printing)</td>
<td>126</td>
</tr>
<tr>
<td>tilted implants</td>
<td>183</td>
</tr>
<tr>
<td>time series analysis</td>
<td>29</td>
</tr>
<tr>
<td>tip offset vector calculation</td>
<td>165</td>
</tr>
<tr>
<td>tissue engineering</td>
<td>123</td>
</tr>
<tr>
<td>tissue engineering (TE)</td>
<td>124</td>
</tr>
<tr>
<td>titanium and titanium alloys</td>
<td>252</td>
</tr>
<tr>
<td>titanium carbide (TiC)</td>
<td>259</td>
</tr>
<tr>
<td>titanium implant components, mechanical behavior</td>
<td>176</td>
</tr>
<tr>
<td>titanium nitride (TiN)</td>
<td>259</td>
</tr>
<tr>
<td>tomosynthetic reconstruction</td>
<td>111</td>
</tr>
<tr>
<td>tomosynthetic reconstructions</td>
<td>108</td>
</tr>
<tr>
<td>tool axis calibration algorithm</td>
<td>165</td>
</tr>
<tr>
<td>tooth database</td>
<td>160</td>
</tr>
<tr>
<td>tooth loss</td>
<td>123</td>
</tr>
<tr>
<td>topographic modelling</td>
<td>162</td>
</tr>
<tr>
<td>transfer function</td>
<td>12</td>
</tr>
<tr>
<td>transforming growth factor β 1 (TGF-β 1)</td>
<td>254</td>
</tr>
<tr>
<td>trauma patient, analysis of a</td>
<td>40</td>
</tr>
<tr>
<td>treatment plan, setting up</td>
<td>148</td>
</tr>
<tr>
<td>Tuned Aperture Computed Tomography (TACT)</td>
<td>112</td>
</tr>
<tr>
<td>two-photon polymerization process (TPP)</td>
<td>291</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unicode</td>
<td>306</td>
</tr>
<tr>
<td>Unicode Standard</td>
<td>314</td>
</tr>
</tbody>
</table>
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 6
“universal” image analysis tool, requirements for a 80
University of Illinois at Chicago (UIC) 220
unsharp masking (UM) 92
US Department of Health and Human Services (DHHS) 193

V
validation of the methods 30
validation, of the rigid registration and visualization method 36
validation, patients and skulls used for 33
VDP model 318
Viewbox software 1, 16, 22
Virtual Dental Patient (VDP) 317, 319
virtual health record (VHR) 192
virtual patient record (VPR) 192
Virtual Reality Modeling Language (VRML) 222
virtual reality (VR) 219
virtual stent phase 151
Visible Human Female (VHF) 318
Visible Human Male (VHM) 318
Visible Korean Human (VKH) 318
volume rendering 11
voxel based approaches 32
VTK 88
VTK (visualization toolkit) 82

W
Watershed algorithm 140, 142, 143
Watershed transform 140

X
X-ray computed transaxial microtomography 320
X-ray photons, causing noise 91

Y
Young’s modulus 172, 174

Z
Zsigmondy-Palmer notation 313
Zsigmondy-Palmer style of denoting dental records 306