Index

A
accounting systems 120, 124
ACM Education Board 74
agent-based computer modeling 144
agent-based modeling 144
algorithm development 40
Analytic Hierarchy Process 77
analytic sciences 120
anthropology 40
anticipatory system 57
anti-competitive practices 228
APMS projects 329
application-domain models 75
application of communicative action theory 90
APQC benchmarking study 140
articulated paradigm 187
artificial enterprise 144, 145
artificial society 144
automated performance measurement systems
(APMS 329

B
battlefield operations 40
Bayesian techniques 212
behavior reproduction testing 283
biodiversity 40
biological, organizational 51
broad theory 183
business intelligence (BI) 331
business process balance 159, 162, 169, 170
business process completeness
159, 162, 167, 168, 169, 170
business process performance 157
business process performance complexity 157
business process re-engineering (BPR) 61
business process understanding complexity
156, 157, 158, 159, 162, 169

C
Capability Maturity Model (CMM) 75
Capability Maturity Model Integration (CMMI)
75
CAS-based enterprise KnS model
137, 141, 150, 153, 154
CAS-based framework 141, 142, 143, 144
CAS-based KnS framework 137, 141, 142, 144, 145, 151, 152
CAS-based model 137, 142
CAS-based tools 150
Catastrophe theory 42
causal loop diagrams (CLDs) 278
cause-effect networks 184
cellular automata (CA) 144
Center for Systems and Software Engineering
(CSSE) 204
centralization 184
chief executive officers (CEO) 252
chief operating officer (COO) 252
chief systems designer 3
CITOS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18
CITOS deployment 7
CITOS realization 2
civilization development 54
coercion 311
Command and Control Research Program
(CCRP) scheme 47
Index

commercial-off-the-shelf (COTS) 205
communication system 183
communications channels 101
communicative action theory 90
community of interest 139
community of practice (CoP) 139
complex adaptive systems 42, 43, 44, 45, 48, 50, 365, 377
complex adaptive systems (CAS) 137, 153
complex goal-oriented systems 57
Complex Information Technology 1, 2
complex natural 183
complex nature 99
complex software-intensive systems 158
complex systems 2, 3, 4, 5, 7, 11, 12, 14, 15, 19, 20, 21, 74, 75, 348, 349, 358
Complex systems 52
component system changes 211
component systems 205, 207, 209, 210, 211
computational resource 188
computational view 188
computer aided software engineering (CASE) software 219
computer-based tools. 170
Computer Science (CS) 68
concepts system 163, 165
conceptual 185, 194, 196
conceptual behavioral research 159, 160
Conceptual data collecting 161
conceptual descriptive-comparative review approach 161
conceptual model of information-as-system 99, 100, 114
conceptual models 160
conceptual systemic model 156
consciousness 40, 47
constructive SoS integration cost model (COSOSIMO) 204, 205
constructive systems engineering cost model (COSYSMO) 208, 213
control, in an organizational context 310
control system 312, 321, 322, 324, 325, 326, 327
convergence protocols 212
core software 4
Correspondence theories 92
COSOSIMO component 208
COSOSIMO cost model 205, 207, 208, 211
COSOSIMO parameters 208, 209
Critical awareness 259
critical management paradigms 163
critical mass 228, 238, 239, 248, 249, 250, 251, 254
critical realism 86, 89, 93, 95, 96, 97
critical success factors (CSF) 312, 319
critical systems 257, 258, 259, 260, 263, 264, 265, 268, 269, 270, 273
Critical systems thinking (CST) 69, 259
critical view 263
CSSE industry 205, 207, 208
Currency MIM (CM) 126
customer relationship management (CRM) 240
customer response time (CRT) 229
cybernetic 123, 126, 127, 132, 133, 135
cybernetic paradigm 163
Cybernetic principles 76
cybernetics 52, 57, 89, 311
Cybersin method 310
cycle time (CT) 229, 230
cyclical process 108

D
data-driven approach 28
data interpretation 189
data mining 112
data on hard-disk (HD) maker 275
Data Processing (DP) 26
data warehouse (DW) 295
DCF method 246
decision assessment 61, 65, 365
decision making (DM) 62
decision-making support systems 61, 65, 371
Decision Support Systems 52
deductive-nomological (D-N) 88
deflationary 93
Department of Defense (DoD) 75
deployment phase 239, 248
design engineering oriented 183
dialectic systems 63
digital subscriber line (DSL) 248
discounted cash flow (DCF) 234
discursive theories 93
disruptive innovation response strategy (DIRS) 287

disruptive innovation strategy (DIS) 274–293

disruptive innovation strategy (DIS) theory 274

DIS theory 275, 276

DM-based 62
dynamic behavior 279
dynamic IS phenomenon 199

E
economic activity 122, 124, 126, 127, 128, 129, 130, 131, 132, 135
economic and financial disciplines 59
economic control 130
Economic jargon 119
economics 119, 120, 123, 136, 275, 289
economics of networks 228, 255
economic system 126, 131, 132
economy 122, 124, 125, 130, 131, 135, 136
e-KnSMOD environment 148, 149
e-KnSMOD model 144
Electronic Industries Alliance (EIA) 204
elementary particle 122
elementary subsystem 122
emancipatory interest 93
emergent dynamics 43
empiricism 88, 90
engineering complexity 4, 5, 6, 7, 8, 13
enterprise 44, 47, 49, 353
enterprise information systems 2
enterprise knowledge sharing
 137, 139, 141, 144, 150, 153
Enterprise knowledge sharing
 137, 138, 142, 143, 147
enterprise knowledge-sharing (KnS) 137
enterprise KnS model
 137, 138, 141, 150, 153, 154
Enterprise KnS Model (e-KnSMOD) 144
Enterprise performance 243
enterprise resource planning architecture 243, 247, 254
enterprise resource planning (ERP) 229, 238
Enterprises Resource Planning systems 52
enterprise’s strategy 61
enterprise transformation 227, 235, 236, 240, 256

environment 3, 6, 7, 12, 41, 42, 43, 44, 45, 47, 48
epidemiology 275
differential equation 278
differential equation theory 278
discrete system 275, 276
discrete time 275, 276
discrete time modeling 275, 276
discrete-time modeling 275, 276
ERP development 254, 255
ERP maturity states 255
ERP model 239, 240, 241, 249, 252, 253
ERP: people 254
ERP solution 230, 238, 239, 244
ERP strategy 230, 240, 244, 245, 246, 248, 252
evaluation 329, 330, 334, 342, 344
evolution 189, 192
exchange-based societies 120, 121, 133, 135
exoretic knowledge 108

F

face-to-face interactions 139
federation of systems (FoS) 5
financial policy 132
framework 183, 187, 188, 189, 190, 191, 194, 195, 196, 198, 199, 201, 202

G
general systems theory 52, 102, 215, 218, 224, 225
General Systems Theory 53
general systems theory (GST) 57, 89, 184, 216
generic business organization 157
generic intra-organizational processes 1
gene therapy 40
global enterprise level 63
governmental IT failures 32
Group Decision Support 52

H

hard-disk (HD) 274, 275, 282
hardware 183, 191, 194, 198
hardware components 4
HD maker population model 274
HD Makers dynamics 283, 284, 285, 288
health IS 58
heterogeneity 138, 142
holism 89
Index

homeostasis in societies 127
homeostatic mechanism 310
homeostatic mechanisms. 311
human activities 26
human activity 186, 189
human activity system 100, 106, 115, 215
human-centered design 58, 65, 377
human conditions 105
human construct 102
Human design 105
human experience 101, 102, 104, 105
human factor 109
human information processing 89
human interaction system 311
humankind 119
human-made objects 53
human moods 40
Hume 88
Humean causality 88
hybrid simulation model 61

I

idealism 90
IJITSA 86, 89, 90, 91
Incremental Commitment Model (ICM) 75
information-as-knowledge 110
information-based controllability 184
Information Rules 228, 248
information system 27, 28, 29, 33, 34, 35, 36, 37, 40, 44, 352, 215, 218, 219, 223, 225, 361, 367
Information System failure 29
information system management 274
Information Systems Development (ISD) 51, 67, 78, 80, 81, 347, 349
information systems, examples of 218
information systems (IS) 51, 68, 99, 158, 182, 183, 330
information systems (IS) evaluation 257, 258, 260
Information Systems Philosophy 86
information systems subsystem concept 163
Information technology 40, 120, 133
information technology (IT) 26, 67, 188
information technology system 233, 234, 245, 246
infrastructure 221
integrated product team (IPT) 210
integrated product team (IPT) framework 210
integrating software 75
intellectual property rights 228
internal rate of return (IRR) 235
internal rate of return (IRR)-based calculations 235
inter-organizational activities 1, 2
IS artifact 194, 198
IS body 192, 193, 194
IS curricula proposals 195
IS discipline 72, 77, 80, 182, 187, 188, 189, 190, 192, 193, 194, 195, 200
ISD researchers 58
ISD strategies 58
IS evaluation 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270
IS failure 25, 28, 31, 32, 34, 37, 379
IS foundations 102
IS generic concepts 190
IS industry 275
IS investments 257, 261, 267
IS/IT level 297, 300, 305
IS journals 87, 89
IS research 182, 183, 187, 188, 189, 190, 191, 193, 194, 195, 196, 199, 200, 202
IS researchers 25
IS research framework 183, 194, 195, 196, 199
IS research paradigms 182, 183, 187, 191, 193, 199
IS syllabus 195
IS technical system 110
IT artifact 188, 189, 191, 193, 201
IT artifacts 188, 191
IT-based organizational systems 158
IT infrastructure 76
IT managerial 188, 191
IT organization 253
IT personnel 253
IT programme 32, 36, 353
IT services process 167

J
Journal of Citation Reports (JCR) 56
Journal on Information Technologies and the Systems Approach (IJITSA) 75

K
key performance parameters (KPPs) 210
KM leadership 150, 151, 152, 153
knowledge-constitutive interests (KCI) 93
knowledge management (KM) 137
knowledge management (KM) leadership 137
Knowledge Management Systems 52
knowledge program 89
knowledge resource management 227
knowledge worker 138, 140, 141, 142, 143, 144, 145, 147, 151, 152
knowledge workers 137, 138, 139, 140, 141, 142, 143, 144, 147, 150, 153
KnS artifacts 143
KnS behavior 137, 138, 139, 140, 142, 143, 144, 146, 147, 149, 150, 151, 152, 153, 154
KnS environment 137, 138, 139, 141, 142, 143, 144, 146, 147, 148, 150, 151, 152, 153, 154
KnS framework 137, 141, 142, 144, 145, 151, 152
KnS leadership 139
KnS model 137, 138, 141, 148, 150, 153, 154

L
large-scale information systems 2
lead system integrator (LSI) 204
legal form 124
leximap 190
life cycle 28
lifecycle 167, 168, 171, 172
linguistic utterance 102
living systems 183, 190
local discretionary currency 130
logical progression 329
logical structure 298
LSI organization 207
LSI SoSE 205, 207, 208, 212

M
macro accounting conceptual framework 127
management and organization theory 59
management control systems 310, 311
management cybernetics 310, 311
Management Information Systems (MIS) 61, 321
management systems 331
managerial process 157, 158
mandatory life-cycle 162
man-made systems 167, 168
mature enterprises 239
meaning system 100, 104, 112
mean square error (MSE) 283, 287
Medical IS, 56
meta-theoretical analogy 110
methodology 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 151, 152, 153, 205, 208, 211, 213
MIM 126, 127, 128, 129, 132
mixed methods 91, 97
mnemonic IS 25
Model-Based System Architecting and Software Engineering (MBASE) framework 74
Model Driven Development 75
Model Swarm 148, 149
ModelSwarm 148
Model validation 160
modern economic processes 127
modern exchange-based societies 120, 121, 135
money-information 119, 120, 121, 122, 125, 126, 127, 128, 131, 132, 133, 134, 135
money-information systems 119, 133, 135
monolithic 188, 189, 191, 193
multi-attribute parameter 210, 211
Multimethodology 69, 84, 89, 91, 370
multi-scale systemic comparison 165
mutual relationships 106

N
national debt 130, 131
naturalist 88
natural science 59
net present value (NPV) 233
network economy 228, 256
networked information system 3
network elements 248, 249, 251, 253, 254
network management 39, 40, 195
nominal concept 188
nomological network 188, 191, 193
non-empirical research method 159
NPV method 246

O
Observer Swarm 148, 149
ObserverSwarm 148
ontology 52, 92
operational structure 316, 317
organisational hierarchies 262
organizational learning
310, 311, 312, 327, 328
organizational science 57
organizational systems 52, 57
organizations 39, 40, 41, 44, 45, 47, 48, 49, 50, 354, 367

P
parameter 204, 207, 208, 210, 211, 212
pathway participation metric (PPM) 275
Peircean model 101
performance complexity 157
personal computer (PC) 276
philosophical debates 88
philosophical foundations 70
philosophical framework 58
philosophical principle 104, 113
philosophical strategy 184
philosophy 86, 87, 90, 92, 93, 94, 95, 96, 97, 98
philosophy of science 87, 90, 93
physical-natural environment 183
plan-driven methods 75, 76, 77
Pluralism 259
pluralist-complementarist research strategy 190
policy parameter 287
political-cultural components 7
positivism 88, 90, 91, 97
Pragmatic theories 92
probability of risk’s occurrences (PRO) 326
process of interpretation 257, 260
Process Reengineering 70
process workflow 245
product development lifecycle 239, 248
Production IS 56
product lifecycle 242, 246
profit and loss (P&L) 242
progressive mechanization 184
project-based education 78, 81, 353
project planning 75
public information systems 27, 28

Q
quality system 311

R
radical position 89
rate of return (ROR) 233
R&D-intensive companies 235
R&D process 234
R&D stages 234
realization 156, 165, 170
real-life client 276
real-life performance 275
real-world situation 296
redundancy 93
reference disciplines 12, 13, 14
research and development (R&D) 234
return on investment (ROI) 245
revolution 189
RFID tagging 45
rising systems engineering 3
robotic reasoning 40
Index

S

SA methodology. 52, 58, 63
SATENA 314, 315, 316, 317, 318, 321
scientific community 88
scientific/intellectual movement (SIM) 189
scientific knowledge 159
scientific theorising 88
SD model analysis software 274
SD modeling method 276, 288
SE education 54, 59, 60
SE Education 58
self-organization 42, 47, 50, 364
self-regulation 310, 311, 312
SE Methodology 58
semiotics model 103
services customers 221
SE topics 58
SI development 33
simulation method 60, 61, 62
simulation methodology 60
simulation model 60, 61, 62, 63
single-complex systems 5
social 183, 185, 186, 188, 189, 191, 193, 198, 199, 203
social actions 105, 106, 114
social design 258, 259
socialization documentation 126
social life 120
social processes 127, 133, 135, 144
social relationship, 52
social science 59, 88, 91
social systems 103, 106, 108, 114, 116
social values 103
social world 88, 91, 92, 105, 106, 113
societal decider super-ordinate 130
societal information systems 133
socio-economical 7
sociology 89
socio-political systemic paradigm 196
socio-politic cultural phenomena 183
socio-technical phenomena 101
socio-technical problems 51
socio-technical system 76
soft/interpretative systems paradigm 187
soft system methodology (SSM) 215
soft systems 89, 90, 96

Soft Systems Methodology (SSM) 29
Soft Systems Thinking (SST) 69
software 183, 191, 194, 198
software development 67, 68, 72, 74, 75, 76, 77, 78, 79, 84, 374
software development life cycles 29
software-domain models 75
software engineering discipline 5
software engineering (SE) 4, 68
software engineering (SwE) 4, 158
Software-Intensive-Systems-of-Systems (SISOS) 76
software systems 6, 8, 10, 12, 21, 68, 72, 75, 76, 355
software-unique extensions 75
SoS architecture 204, 206, 207, 211
SoSE activities 205, 207, 208
SoS engineering (SoSE) 204, 205
SoS environment 209, 213
SoS framework 209, 210, 211
SoS interface protocols 207, 209, 211
SSADM 28, 29, 36, 37, 362, 367, 383
stakeholder community 210
strategic process 167
Structuration theory 45
structure 216, 220, 221, 222
Structured Systems Analysis and Design Method 28
sub-model 210, 211
subsystem 195, 196, 198
sub-systems 52, 199
Sugarscape Model 144
supply chain management 39, 40, 45
supply-side economies 248
supporting structure 317
support virtual organizations 244
supra-suprasystem 197, 199
suprasystem 5, 184, 195, 197, 199
system development life cycle (SDLC) 217
System Dynamics 57, 64, 66, 357, 378
system dynamics (SD) model 275
system dynamics (SD) modeling method 274
systemic concepts 199
systemic definition 163
systemic framework 77, 85, 377
systemic model 156, 157, 158, 159, 160, 161, 162, 164, 170, 172
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>systemic triangulation</td>
<td>110</td>
</tr>
<tr>
<td>systemic view</td>
<td>187, 202, 294, 297</td>
</tr>
<tr>
<td>systemic worldview</td>
<td>5</td>
</tr>
<tr>
<td>system of information</td>
<td>26, 27, 28, 29, 30, 33</td>
</tr>
<tr>
<td>system of systems</td>
<td>192, 194, 199</td>
</tr>
<tr>
<td>system of systems (SoS)</td>
<td>5, 204</td>
</tr>
<tr>
<td>system-of-systems (SoS) architectures</td>
<td>204</td>
</tr>
<tr>
<td>systems approach</td>
<td>86, 89, 94, 97</td>
</tr>
<tr>
<td>systems approach (SA)</td>
<td>51</td>
</tr>
<tr>
<td>systems-based view</td>
<td>196</td>
</tr>
<tr>
<td>systems boundary</td>
<td>99, 100, 110</td>
</tr>
<tr>
<td>systems concepts</td>
<td>214, 215, 216, 220, 224, 225</td>
</tr>
<tr>
<td>systems dynamics</td>
<td>76, 77</td>
</tr>
<tr>
<td>systems engineering</td>
<td>74, 75, 76, 77, 79, 81, 89, 350</td>
</tr>
<tr>
<td>systems engineering lifecycle</td>
<td>254, 255</td>
</tr>
<tr>
<td>Systems Engineering Research Center (SERC)</td>
<td>75</td>
</tr>
<tr>
<td>Systems Engineering (SE)</td>
<td>51, 158</td>
</tr>
<tr>
<td>systems epistemology</td>
<td>102</td>
</tr>
<tr>
<td>system’s methodologies</td>
<td>51</td>
</tr>
<tr>
<td>systems model</td>
<td>89</td>
</tr>
<tr>
<td>Systems of Information</td>
<td>25, 26, 34</td>
</tr>
<tr>
<td>systems of systems (SoS)</td>
<td>169</td>
</tr>
<tr>
<td>systems theory concept</td>
<td>60</td>
</tr>
<tr>
<td>systems thinking</td>
<td>278, 282</td>
</tr>
<tr>
<td>systems thinking framework</td>
<td>99, 100</td>
</tr>
<tr>
<td>systems thinking perspective</td>
<td>99</td>
</tr>
<tr>
<td>system theory</td>
<td>223, 224</td>
</tr>
<tr>
<td>tacit knowledge</td>
<td>138, 139</td>
</tr>
<tr>
<td>technical</td>
<td>183, 188, 189, 193, 194, 198</td>
</tr>
<tr>
<td>technical and engineering disciplines</td>
<td>59</td>
</tr>
<tr>
<td>technical solutions</td>
<td>53</td>
</tr>
<tr>
<td>TEI system</td>
<td>229</td>
</tr>
<tr>
<td>telecommunications industry</td>
<td>53</td>
</tr>
<tr>
<td>terminology</td>
<td>113</td>
</tr>
<tr>
<td>theoretical model</td>
<td>294, 299, 304, 305</td>
</tr>
<tr>
<td>theory building potential</td>
<td>278</td>
</tr>
<tr>
<td>theory of argumentation</td>
<td>99, 107</td>
</tr>
<tr>
<td>theory of communicative action (TCA)</td>
<td>93</td>
</tr>
<tr>
<td>theory of systems</td>
<td>157, 159, 163, 170</td>
</tr>
<tr>
<td>Time-lagged MIM (TLM)</td>
<td>126</td>
</tr>
<tr>
<td>total enterprise integration (TEI) framework</td>
<td>229</td>
</tr>
<tr>
<td>Total Quality Management</td>
<td>70</td>
</tr>
<tr>
<td>Toulmin’s theory</td>
<td>99, 107</td>
</tr>
<tr>
<td>trade</td>
<td>124, 127, 128, 129, 132</td>
</tr>
<tr>
<td>traditional information systems</td>
<td>28</td>
</tr>
<tr>
<td>transfers</td>
<td>120, 127, 135</td>
</tr>
<tr>
<td>triadic pattern</td>
<td>102</td>
</tr>
<tr>
<td>triadic relation</td>
<td>54, 101, 109, 110, 112</td>
</tr>
<tr>
<td>true, justified, belief (TJB)</td>
<td>92</td>
</tr>
<tr>
<td>true theory</td>
<td>93</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Ulrich’s theory</td>
<td>99</td>
</tr>
<tr>
<td>Unified Modeling Language (UML)</td>
<td>61, 69</td>
</tr>
<tr>
<td>University of Southern California (USC)</td>
<td>204</td>
</tr>
<tr>
<td>useful theory</td>
<td>93</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Valuation of Technology</td>
<td>234, 241, 246</td>
</tr>
<tr>
<td>verification and validation (V&V)</td>
<td>211</td>
</tr>
<tr>
<td>virtual network</td>
<td>238, 250</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>weighted average cost of capital (WACC)</td>
<td>233</td>
</tr>
<tr>
<td>wideband Delphi process</td>
<td>212</td>
</tr>
<tr>
<td>work system framework</td>
<td>217, 220, 221, 222, 223</td>
</tr>
<tr>
<td>work system life cycle model</td>
<td>217</td>
</tr>
<tr>
<td>work system method</td>
<td>214, 214–226, 215, 223, 225</td>
</tr>
<tr>
<td>work system method, as a systems approach</td>
<td>220</td>
</tr>
<tr>
<td>work system’s goal</td>
<td>221</td>
</tr>
<tr>
<td>wuli-shili-renli (WSR)</td>
<td>58</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XP development cycle</td>
<td>28</td>
</tr>
</tbody>
</table>