Index

A

- active agents 262
- adaptive Web applications (AWA) 299, 300, 301, 302, 315
- agent-based e-learning process model 78, 79, 88
- agent-orientation (AO) 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54
- agent-oriented 83
- agent-oriented programming (AOP) 40
- agent-oriented software 1, 4, 25, 55
- agent platform security manager (APSM) 114, 117
- agent types 36
- agile workflow 279, 280, 281, 282, 294
- anti-pattern 25
- architectural description language (ADL) 20
- architectural design 1, 3, 5, 7, 17, 20, 22, 26
- assessment answers 84, 87
- atomic actual existence formula 131
- atomic formula 131
- atomic identity formula 131
- automated virtual facilitation application (AVFA) 269, 270
- autonomous agents 1, 25, 26
- average relevancy (AR) 180, 182

B

- BACIIS 31, 33, 34, 40, 42
- Barcan formula (BF) 131
- Bayesian network 92, 93, 94, 95, 97
- behavior context 65, 68, 69, 70, 71, 74
- belief-desire-intention (BDI) 13, 16, 49, 54, 63, 64, 66, 68, 74, 75, 76
- belief revision function (BRF) 63
- belief, task and behavior (BTB) 56, 57, 58, 65, 68, 69, 72, 73, 74
- bioinformatics 32, 33, 41
- biological data 30, 31, 32, 34, 36, 39, 40
- biological domain ontology 30, 32, 34, 39, 40, 41
- biological queries 30, 32, 40, 41
- Blackboard 88
- block weight 170, 171, 172
- Bloom’s taxonomy 79, 80, 89
- boundary ontology 113
- business activity monitoring (BAM) 212
- business operations management (BOM) 212
- business process intelligence (BPI) 212

C

- C3I systems 92
- call-for-proposals pattern (CFP) 15, 16
- case-based adaptation 279
- case-based reasoning (CBR) 288
- case handling (CH) 213
- centralized planning 36
- chain of values 18
- cognitive parameters 320, 321, 322, 323, 324, 327, 328, 331, 334
- collaborative natural language interaction (CNLI) 56, 57, 59, 60, 61, 72, 73, 75
- common constraint (CC) 136, 137, 138, 139, 149, 151, 153, 155
- common value attribute (CVA) 136, 137, 138, 139, 140, 148, 149, 151, 155
- communicational dimension 10, 15
- computer supported cooperative work (CSCW) 214, 231

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
Index

conceptual modeling 132, 133, 154, 156
correction checker 224, 225
constant domain 131
content matching 129, 130, 148, 153, 162
control mechanism 95
coreference finding 228
coupling between objects (CBO) 5
customer relationship management (CRM) 212, 213

d
DAML+OIL 121, 123
DARPA agent markup language (DAML) 121, 122, 123, 129, 158
data abstraction 48, 49, 51
data encapsulation agent (DEA) 119
data-hiding paradigm 48
data integration 1, 4, 22, 32, 36, 37
data integrator 7, 22, 24
data schema 31, 32
decision support system (DSS) 235, 249, 250, 252, 255, 263, 264, 265
depth of inheritance tree (DIT) 4
design patterns 1, 3, 4, 5, 23, 25, 26, 27, 28
design philosophy 83, 89
detailed design 1, 3, 5, 6, 7, 21, 22, 23
differential entropy 96
digital elevation model (DEM) 119, 120
disciplinary matrix 48, 50
discretionary judgments 263
domain model 31
domain ontology 30, 31, 32, 34, 38, 39, 40, 41, 110, 111, 115, 116, 117, 119, 120, 121, 124, 133, 140, 141, 171, 172
domain oriented probability distribution (DOPD) 164, 166, 167, 169, 170, 171, 172, 173, 176, 178, 184
domain-specific 111
DOM tree 165
dynamic Bayesian network (DBN) 94, 95, 97, 98, 99, 100, 101, 102, 107
dynamic dimension 10, 16
dynamic informational functionality (DIF) 304, 305, 318
dynamic multilingualism 57, 59, 61, 64, 75
dynamism 57, 58, 75

e
e-Government 111, 112, 114, 116, 117, 121
e-learning models 78, 80, 81, 84, 88, 89
e-learning systems 78, 79, 89
E-MAPS 110
empirically best matching case (EBMC) 293, 294
end-user 110, 113
eengineer-to-order (ETO) 244, 245, 246, 247
En Onto Model 128–158
enterprise knowledge 1
enterprise resource planning (ERP) 212, 213
entropy 92, 93, 95, 96, 103, 106
epistemological approach 43, 44
epistemological basis 43
event detection 100, 101
event-driven process chain (EPC) 220
event log 212, 213, 214, 223, 224, 227
execution agent (EA) 38, 40
expert system (ES) 264
explanation provision strategies 265
external dependency relation (EDR) 135, 136, 137, 138, 139, 149, 151, 153, 155

f
Federal Geographic Data Committee (FGDC) 111, 112, 126
field-based 113
focal firm 235, 236, 237, 245, 246, 252, 253, 255
focused crawlers 159, 161, 181, 182, 184
“forget” approach 106
Foundation for Intelligent Physical Agents (FIPA) 3, 27, 38, 41
fusion strategy 94, 97, 100, 103, 104, 105

g
geographic information system (GIS) 110, 111, 112, 113, 114, 120, 125, 126, 127
geography markup language (GML) 121
Index

geometry ontology 113
gemorphologist 119
geospatial 110, 111, 112, 126, 127
GIWA 299–319
global as view (GAV) 31
global ontology 128, 129
global optimization 92
group decision support systems (GDSS) 262, 264, 265, 267, 268, 273, 274, 275

H
harvest rate (HR) 171, 182
heterogeneity 31, 32, 33, 36, 37, 39
hidden Markov model 95
hybrid selection model (HSM) 321, 322, 331, 332, 333, 334
hydrology 110, 111, 121, 122

I
identity condition (IC) 133, 134, 135, 136, 137, 138, 140, 147, 148, 149, 151, 153, 154, 155, 157, 158
implementation logic 111
implementation-oriented 1, 26
implicit ontology 73
incommensurability thesis 45, 55
incompleteness 203, 222, 223
inference degradation 92, 94, 97, 98, 101, 106, 107
information customization 188, 189, 209
information fusion 92, 93, 94, 96, 97, 100, 104, 107
information integration 92, 94, 100, 107
information linkage 31
information modeling 100
information overload 188, 189, 190, 208, 209
information retrieval approach 162, 190
information retrieval (IR) 162, 163, 231
input agents 64
intentional dimension 10, 11, 12
internal platform message transport (IPMT) 114
interpolation 113, 181
inverse document frequency (IDF) 162

J
Java agent development framework (JADE) 38, 39, 41, 54

K
Kalman filtering 95
knowledge-based system (KBS) 264, 265
Kripke frame 132
Kripke model 132, 133
Kuhnian 43, 44, 45, 48, 49, 50, 51, 52, 54

L
lack of cohesion in methods (LCOM) 4
Lakatosian 43, 44, 46, 48, 49, 50, 51, 52, 54
learning process management agent 83, 84, 85, 86, 87, 88
learning progress log 84, 86, 87, 88
learning resources 81, 82, 83, 84, 85, 87, 89
link identification module (LIM) 168
link weight 163, 165, 168, 174, 176
link weighting module (LWM) 168
local as view (LAV) 31
logic-based agents 62, 63
LookSmart 160, 191, 192

M
machine learning 162, 188, 208, 232
machine learning approach 162, 208, 232
make-to-order (MTO) 244, 245, 246, 247
make-to-stock (MTS) 244, 245, 246, 247
mapping agent (MA) 37, 38, 40, 42, 54
mereology 113
mereotopology 113, 127
meta-classes 143
meta-search 160, 188, 190, 191, 192, 193, 194, 198, 208
model manager (MM) 118
modularity 39, 40, 41, 53
morphology 35
multi-agent based framework 110
multi-agent system (MAS) 1, 2, 3, 4, 5, 6, 7, 10, 12, 17, 20, 21, 22, 26, 43, 47, 49, 322
mutual information 92, 96, 104, 105, 107
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>naive geography 113</td>
</tr>
<tr>
<td>name-based matching 129, 152, 155</td>
</tr>
<tr>
<td>National Spatial Data Infrastructure (NSDI) 111</td>
</tr>
<tr>
<td>neural network 167, 169, 188, 193, 195, 196, 208, 209, 210</td>
</tr>
<tr>
<td>nonautomatic 13</td>
</tr>
<tr>
<td>non-preferred terms (NPT) 166</td>
</tr>
<tr>
<td>number of children (NOC) 4</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>object-based 113</td>
</tr>
<tr>
<td>object-orientation (OO) 40, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54</td>
</tr>
<tr>
<td>object oriented programming (OOP) 40</td>
</tr>
<tr>
<td>Occam’s razor 224</td>
</tr>
<tr>
<td>OntoClean 131, 133, 136, 151, 153, 154, 157</td>
</tr>
<tr>
<td>ontological conceptualization 133</td>
</tr>
<tr>
<td>ontology agent 114, 116, 117, 118</td>
</tr>
<tr>
<td>ontology collaboration agent (OCA) 117, 118</td>
</tr>
<tr>
<td>ontology matching 125, 129, 130, 135, 144, 145, 147, 150, 155, 156</td>
</tr>
<tr>
<td>ontology repository 114, 116, 117</td>
</tr>
<tr>
<td>Open Directory Project 160</td>
</tr>
<tr>
<td>organizational patterns 17, 25</td>
</tr>
<tr>
<td>organization theory 17, 26</td>
</tr>
<tr>
<td>OSIRIS 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124, 125</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>page analysis module (PAM) 165</td>
</tr>
<tr>
<td>page importance module (PIM) 165, 166, 169, 178, 179, 180, 182</td>
</tr>
<tr>
<td>page preparation module (PPM) 165</td>
</tr>
<tr>
<td>partner organizations 19</td>
</tr>
<tr>
<td>passive agents 262</td>
</tr>
<tr>
<td>Petri net 219, 220, 221, 224</td>
</tr>
<tr>
<td>phonology 35</td>
</tr>
<tr>
<td>procedural paradigm 48</td>
</tr>
<tr>
<td>process logs 216, 230</td>
</tr>
<tr>
<td>process-oriented methods 279</td>
</tr>
<tr>
<td>process patterns 25</td>
</tr>
<tr>
<td>product data management (PDM) 213</td>
</tr>
<tr>
<td>professional functionality (PF) 304, 305, 319</td>
</tr>
<tr>
<td>ProM tool 213</td>
</tr>
<tr>
<td>pyramid style 18</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>quality of service (QoS) 320, 321, 322, 323, 328, 331, 334, 335</td>
</tr>
<tr>
<td>quantified modal logic (QML) 130, 131</td>
</tr>
<tr>
<td>query formulation 32, 34</td>
</tr>
<tr>
<td>query planner agent (QPA) 37, 38, 40</td>
</tr>
<tr>
<td>query rewriting 34</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>reactive agents 62</td>
</tr>
<tr>
<td>relevancy classifier 162, 163</td>
</tr>
<tr>
<td>“remember” approach 106</td>
</tr>
<tr>
<td>reputation table (RT) 327, 328</td>
</tr>
<tr>
<td>research programme 43, 44, 46, 48, 49, 50, 52, 54</td>
</tr>
<tr>
<td>response for a class (RFC) 5</td>
</tr>
<tr>
<td>result agent (RA) 38, 40</td>
</tr>
<tr>
<td>result integration 34</td>
</tr>
<tr>
<td>result synthesis 36</td>
</tr>
<tr>
<td>rigidity 130, 135, 138, 154, 157, 158</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>schematic heterogeneity 129</td>
</tr>
<tr>
<td>self-organizing map 203, 204, 205, 207, 208, 209, 210</td>
</tr>
<tr>
<td>semantic enrichment 130, 143, 144, 154, 155</td>
</tr>
<tr>
<td>semantic equality 147</td>
</tr>
<tr>
<td>semantic heterogeneity 128, 129, 135, 144, 154, 155, 156</td>
</tr>
<tr>
<td>semantic interoperability 133</td>
</tr>
<tr>
<td>semantic map 190, 200, 201, 205, 206, 207</td>
</tr>
<tr>
<td>semantic process mining 228</td>
</tr>
<tr>
<td>semantic votes (SEV) 168, 169, 170, 174, 175, 176</td>
</tr>
<tr>
<td>Semantic Web 320, 332, 334, 335</td>
</tr>
<tr>
<td>sensor engagement 92, 106, 107</td>
</tr>
<tr>
<td>service oriented computing 235</td>
</tr>
<tr>
<td>service provider agent (SPA) 322, 324, 327, 328, 329, 330, 331, 332, 333</td>
</tr>
<tr>
<td>service requester agent (SRA) 322, 324, 326, 327, 328</td>
</tr>
</tbody>
</table>
Index

SIF 304, 305
situateness 2, 47
slope map 120
social diagram 10
social dimension 10, 11
social network analysis (SNA) 214
social templates 1, 2, 3, 4, 7, 20, 26
sociometry 214
software process engineering metamodel (SPEM) 5, 29
soil map 119
SOMSE 188, 194, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209
static Bayesian network (SBN) 94
strategic dependency model 5
strategic rationale diagram 5
structural dimension 10, 12
subqueries 22, 32, 34, 37, 38, 40
subsumption relationship 134, 139
Supply Chain Council (SCC) 243
supply chain operations reference (SCOR) 23
7, 238, 243, 244, 245, 247, 248, 252, 259
syntactic heterogeneity 129
syntactic votes (SYV) 168, 170, 172, 174, 175, 176

T

TAMBIS 31, 33, 34, 40, 41
task allocation 36
task context 63, 65, 66, 67, 68, 69, 70, 71, 74
task decomposition 36
taxonomical heterogeneity 129, 142
term frequency (TF) 162, 204
terminological heterogeneity 129, 142, 151, 155
topic locality 167, 177
travel planning agent 72, 73

U

unique name assumption (UNA) 240
universal accessibility 131, 132
urban ontology 113
user interface agent (UIA) 37, 38, 39, 40, 116, 117
user involvement diagrams 217, 223, 227
user-modeling 57, 58
user ontology 116, 117

W

Web crawlers 160, 186
WebCT 88
Web map service (WMS) 123
Web ontology language (OWL) 235, 238, 239, 240, 241, 243, 248, 250, 251, 252, 253, 254, 259, 260
Web portals 160, 187
Web procedure services ontology (WPSO) 117, 119
Web service description language (WSDL) 117
weighted methods per class (WMC) 4
workflow enactment service 280, 288, 294
workflow management (WFM) 213, 214
workflow modeling language 279, 282, 285, 286, 294
workflow similarity measure 279
wrapper agent (WA) 38, 40

Y

Yahoo 160, 191, 192, 200, 208